首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.  相似文献   

2.
For the purpose of producing high intensity, multiply charged metal ion beams, the dual hollow cathode ion source for metal ions (DUHOCAMIS) was derived from the hot cathode Penning ion source combined with the hollow cathode sputtering experiments in 2007. To investigate the behavior of this discharge geometry in a stronger magnetic bottle-shaped field, a new test bench for DUHOCAMIS with a high magnetic bottle-shaped field up to 0.6 T has been set up at the Peking University. The experiments with magnetic fields from 0.13 T to 0.52 T have indicated that the discharge behavior is very sensitive to the magnetic flux densities. The slope of discharge curves in a very wide range can be controlled by changing the magnetic field as well as regulated by adjusting the cathode heating power; the production of metallic ions would be much greater than gas ions with the increased magnetic flux density; and the magnetic field has a much higher influence on the DHCD mode than on the PIG mode.  相似文献   

3.
A compact 14.5GHz electron cyclotron resonance (ECR) ion source for the production of slow, multiply charged ions has been constructed,with the plasma-confining magnetic field produced exclusively by permanent magnets.Microwave power of up to 175W in the frequency range from 12.75 to 14.SGHz is transmitted from ground potential via a PTFE window into the water-cooled plasma chamber which can be equipped with an aluminum liner.The waveguide coupling system serves also as biased electrode,and two remotely-controlled gas inlet valves connected via an insulating break permit plasma operation in the gas- mixing mode.A triode extraction system sustains ion acceleration voltages between 1kV and 10kV.The ECR ion source is fully computer-controlled and can be remotely operated from any desired location via Ethernet.  相似文献   

4.
Extensive plasma potential measurements have been carried out using a device developed at JYFL. In this article the main results of the measurements will be summarized.A new simulation code to study the electron heating is being developed.One objective of the code is to determine the change of the electron loss cone when the magnetic field component of the electromagnetic wave is taken into account along with the permittivity of the plasma.As a part of the work,accurate X-ray measurements have been initiated. A new plasma chamber based on the MMPS-concept(Modified MultiPole Structure)has successfully been constructed and tested with the JYFL 6.4GHz ECRIS.The results and conclusions will be presented elsewhere in these proceedings.In the same article,a new concept of ECRIS and first results will be presented.The active development work of evaporation ovens has been carried out in a joint European collaboration(ISIBHI). The objective of the task is to make the operation of the oven reliable at 2000℃for several days.Both resistively and inductively heated ovens have been studied and further developed.The status of this work will be presented.  相似文献   

5.
A Superconducting ECR ion source with Advanced design in Lanzhou (SECRAL) was successfully built to produce intense beams of highly charged ions for Heavy Ion Research Facility in Lanzhou (HIRFL).The ion source has been optimized to be operated at 28GHz for its maximum performance.The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping.For 28GHz operation,the magnet assembly can produce peak mirror fields on axis 3.6T at injection,2.2T at extraction and a radial sextupole field of 2.0T at plasma chamber wall.A unique feature of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. During the ongoing commissioning phase at 18GHz with a stainless steel chamber,tests with various gases and some metals have been conducted with microwave power less than 3.2kW and it turned out the performance is very promising.Some record ion beam intensities have been produced,for instance,810eμA of O~(7 ),505eμA of Xe~(20 ),306eμA of Xe~(27 ),21eμA of Xe~(34 ),2.4eμA of Xe~(38 ) and so on.To reach better results for highly charged ion beams,further modifications such as an aluminium chamber with better cooling,higher microwave power and a movable extraction system will be done,and also emittance measurements are being prepared.  相似文献   

6.
The coupling between microwave generators and ECR ion sources(ECRIS)is a key point for the design of the new generation ECRIS as well as for the optimization of the existing ones.The electromagnetic characterization of the plasma chamber where the ionization phenomena take place is a fundamental starting point to understand and model such process.In such effort the complex structures of the injection and extraction flanges together with the large dimensions of the chamber and the high frequencies that are typically used make impossible an analytical solution and also create great difficulties in the modelling even with state-of- art electromagnetic simulators(CST,HFSS),In the following paper the results of some numerical calculations for the optimum plasma chamber excitation will be presented along with the experimental measurements carried out with the SERSE ion source at INFN-LNS.A campaign of measurements is also planned to further investigate the microwave coupling and the mode excitation,which determines the efficiency of the ECR plasma heating.  相似文献   

7.
The relationship between the transported ion current and the cathodic arc current is determined in a vacuum arc plasma source equipped with a curved magnetic filter. Our results suggest that the outer and inner walls of the duct interact with the plasma independently. The duct magnetic field is a critical factor of the plasma output. The duct transport efficiency is to maximize at a value of bias plate voltage in the range +10 V to +20 V, and independent (within our limit of measurement) of the magnetic field strength in the duct. The plasma flux is composed of two components: a diffusion flux in the transverse direction due to particle collisions, and a drift flux due to the ion inertia. The inner wall of the magnetic duct sees only the diffusion flux while the outer wall receives both fluxes. Thus, applying a positive potential to the outer duct wall can reflect the ions and increase the output current. Our experimental data also show that biasing both sides of the duct is more effective than biasing the outer wall alone.  相似文献   

8.
The structure of an electronegative plasma sheath in an oblique magnetic field is investigated with a fluid model. We assume the system consists of hot electrons and negative ions as well as cold positive ions. Densities of particles and distributions of the spacious potential in various states of magnetic field are studied. The result shows that the existence of magnetic field and negative ions has great effects on the plasma sheath structures. In addition, the effects of negative ion density and temperature on the structure of the electronegative plasma sheath are discussed.  相似文献   

9.
超导ECR离子源DECRIS-SC2   总被引:1,自引:0,他引:1  
A new compact version of the"liquid He-free"superconducting Electron Cyclotron Resonance Ion Source,to be used as an injector for the U-400M cyclotron,is presently under construction at the FLNR in collaboration with LHE(JINR).The axial magnetic field of the source is created by the superconducting magnet,and the NdFeB hexapole is used for the radial plasma confinement.The microwave frequency of 14GHz will be used for ECR plasma heating.The DECRIS-SC2 superconducting magnet is designed for the induction of a magnetic field on the axis of the source of up to 1.4T(extraction side)and 1.9T(injection side) at nominal current of 75A.Cooling of the coils is carried out by CM cryocooler with cooling power of 1W at the temperature 4.5K.The basic design features of the superconducting magnet and of the ion source are presented.The main parts of the source are in production.The first beam test of the source is expected in the beginning of 2007.  相似文献   

10.
毕振华  洪义  雷光玖  王帅  王友年  刘东平 《中国物理 B》2017,26(7):75203-075203
A high-density RF ion source is an essential part of a neutral beam injector. In this study, the authors attempt to retrofit an original regular RF ion source reactor by inserting a thin dielectric tube through the symmetric axis of the discharge chamber. With the aid of this inner tube, the reactor is capable of generating a radial magnetic field instead of the original transverse magnetic field, which solves the E × B drift problem in the current RF ion source structure. To study the disturbance of the dielectric tube, a fluid model is introduced to study the plasma parameters with or without the internal dielectric tube, based on the inductively coupled plasma(ICP) reactor. The simulation results show that while introducing the internal dielectric tube into the ICP reactor, both the plasma density and plasma potential have minor influence during the discharge process, and there is good uniformity at the extraction region. The influence of the control parameters reveals that the plasma densities at the extraction region decrease first and subsequently slow down while enhancing the diffusion region.  相似文献   

11.
The necessity of a three-dimensional simulation of the extraction has been accepted for electron cyclotron resonance ion sources (ECRIS) as well as for negative ion sources. For an ECRIS, the magnetic hexapole together with the solenoidal mirror field defines a minimum B structure which confines the plasma. Depending on the magnetic flux density distribution, the plasma density in front of the extraction electrode might be non-homogeneous. In H?-sources, magnetic filter fields are used to separate electrons with different energies or to separate electrons from negative ions. These magnetic filters influence the ions as well. Besides these asymmetry effects other quantities have to be considered, namely the correct formulation of initial conditions of all present charged particles. For ECRIS the initial conditions for ions are assumed to be in the electronvolt range, whereas it can be in the kilo electronvolt range for laser ion sources. Another quantity of interest is the electron energy and the distribution of electrons in real space and their movability if magnetic fields are present.  相似文献   

12.
In recent years, there is very intense worldwide research and development work on electron cyclotron resonance ion source (ECRIS). Remarkable progress represented by the third generation superconducting ECRIS has been made with regards of intense highly charged ion beam production such as >600 eμA Ar16+, >10 eμA Ar18+, and hundreds of enA He-like Kr34+. A low energy heavy ion platform named Low Energy heavy ion Accelerator Facility (LEAF) that features a next generation 45 GHz ECRIS, a 300 kV high voltage platform, a 0.5 MeV/u radio-frequency quadrupole, and several multidisciplinary experimental terminals is under construction at the Institute of Modern Physics (IMP). This paper will report on the recent progress with ECRIS dedicated to highly charged ions and the status of LEAF at IMP that will provide new opportunities for highly charged ion physics in the near future.  相似文献   

13.
MH Rashid  RK Bhandari 《Pramana》2002,59(5):781-794
The conventional type of magnetic well is formed by superposition of two types of magnetic field, axial bumpy field and radial multipole field. It is used to contain plasma that consists of neutrals, ions and electrons. These particles are in constant motion in the well and energetic electrons create plasma by violent collisions with neutrals and ions. The confined electrons are constantly heated by ECR technique in the presence of magnetic field. In this paper it has been shown theoretically that how the electron motion is influenced in terms of heating, containment and azimuthal uniformity of plasma, by the axial rotation of the multipole magnetic field [1,2]. Afterwards, the feasibility of achieving a rotating magnetic multipole field is discussed to some extent. And it is seen that it is not beyond the capability of the scientific community in the present scenario of the advanced technology. Presently, it can be achieved for lesser field and slightly larger size of the multipole electromagnet and can be used for improvement of the ECR ion source (ECRIS).  相似文献   

14.
For the acceleration of radioactive isotopes with a mass greater than 30 amu charge breeding with an electron cyclotron resonance ion source (ECRIS) is being used at ISAC. Singly charged ions from the target ion source combination are injected into a 14.5 GHz ECRIS from PANTECHNIK and charge bred to highly charged ions with a mass to charge ratio around 6. Efficiencies from 1 to 8 % could be reached for different isotopes. The article describes the set- up of the system and reports on results obtained for efficiency as well as purity of the beam. Methods to improve the purity are discussed.  相似文献   

15.
Ion sources have a significant number of applications in accelerator facilities and in industrial applications. In particular, the electron cyclotron resonance ion sources (ECRIS) are nowadays the most effective devices that can feed particle accelerators in a continuous and reliable way, providing high current beams of low and medium charge state ions and lower, but still remarkable, beam current for highly charged ions. In recent years several experiments have shown that the current, the charge states and even the beam shape change by slightly varying the microwave frequency (the so-called frequency tuning effect – FTE). The theoretical explanation of these results is based on the difference in the electromagnetic field pattern over the resonance surface, i.e. that region where the electrons resonantly interact with the incoming wave. In order to be consistent with the experiments, this model requires that standing waves are formed also in presence of a dense plasma. The proof was sought by means of a series of measurements performed with a network analyzer and with a plasma reactor operating at 2.45 GHz, according to the principles of the microwave discharge ion sources (MDIS). The measurements have been carried out with the aim to achieve the electromagnetic characterization of the plasma chamber in terms of possible excited resonant modes with and without plasma, and they reported that resonant modes are excited inside the cavity even in presence of a dense plasma. It was observed that the plasma dynamics strongly depends on the structure of the standing waves that are generated. The measurement of the eigen-frequencies' shifts were carried out for several values of pressure and RF power, thus linking the shift with the plasma density measured by a Langmuir probe. The changes in plasma shape, density and electron temperature have been also monitored for different operating conditions. A strong variation of plasma properties has been observed as a consequence of the introduction of the Langmuir probe inside the resonant cavity, thus demonstrating that the standing wave can be strongly perturbed even by means of relatively small metallic electrodes. The measurements reported hereinafter are relevant also for ECRIS, because they confirm the validity of the theoretical model that describes the frequency tuning.  相似文献   

16.
There is a clear evidence that the combination of ability to produce intense beams of highly charged heavy ions and of reliability, stability and low emittance can be guaranteed only by an adequate design of electron cyclotron resonance ion sources (ECRIS). Following the roadmap defined by Geller's scaling laws (1987) and the high B-mode concept (1990), the evolution of ECRIS has been steady and it amounted to about one order of magnitude per decade, as for high charge state currents. A further increase is possible according to the standard model of ECR sources unless technological problems may limit it in the future. Some sources are in the commissioning or construction phase to get the milliampere level for highly charged heavy ions, and some limitations have been already found but the possibility to get a further step forward remains unchanged. This paper presents the flashbacks of previous relevant experiences, along with the perspectives for higher current production in the years after 2010.  相似文献   

17.
本文提出了会切磁场多极离子源中,磁场对等离子体参数以及可引出离子束流和放电室阳极收集的离子电流影响的实验研究结果,并对该结果进行了分析讨论。  相似文献   

18.
不同磁路电子回旋共振离子源引出实验   总被引:1,自引:0,他引:1       下载免费PDF全文
金逸舟  杨涓  冯冰冰  罗立涛  汤明杰 《物理学报》2016,65(4):45201-045201
空间推进所用的电子回旋共振离子源(ECRIS)应具有体积小、效率高的特点. 本文研究的ECRIS使用永磁体环产生磁场, 有效减小了体积, 该离子源利用微波在磁场中加热电子, 电子与中性气体发生电离碰撞产生等离子体. 磁场在微波加热电子的过程中起关键作用, 同时影响离子源内等离子体的约束和输运. 通过比较四种磁路结构离子源的离子电流引出特性来研究磁场对10 cm ECRIS性能的影响. 实验发现: 在使用氩气的条件下, 特定结构的离子源可引出160 mA的离子电流, 最高推进剂利用率达60%, 最小放电损耗为120 W·A-1; 所有离子源均存在多个工作状态, 工作状态在微波功率、气体流量、引出电压变化时会发生突变. 离子源发生状态突变时的微波功率、气体流量的大小与离子源内磁体的位置有关. 通过比较不同离子源的引出离子束流、放电损耗、气体利用率、工作稳定性的差异, 归纳了磁场结构对此种ECRIS引出特性的影响规律, 分析了其中的机理. 实验结果表明: 保持输入微波功率、气体流量、引出电压不变时, 增大共振区的范围、减小共振区到栅极的距离, 离子源能引出更大的离子电流; 减小共振区到微波功率入口、气体入口的距离能降低维持离子源高状态所需的最小微波功率和最小气体流量, 提高气体利用率, 但会导致放电损耗增大. 研究结果有助于深化对此类离子源工作过程的认识, 为其设计和性能优化提供参考.  相似文献   

19.
ABSTRACT

The ion sources for accelerators devoted to medical applications must provide intense ion beams, with high reproducibility, stability and brightness. AISHa (Advanced Ion Source for Hadron therapy) is a compact ECRIS whose hybrid magnetic system consists of a permanent Halbach-type hexapole magnet and a set of independently energized superconducting coils. These coils will be enclosed in a compact cryostat with two cryocoolers for LHe-free operation. The AISHa ion source has been designed by taking into account the typical requirements of hospital-based facilities, where the minimization of the mean time between failures (MTBF) is a key point together with the maintenance operations which should be fast and easy. It is a multipurpose device, operating at 18?GHz, in order to achieve higher plasma densities able to provide enough versatility for future needs of the hadron therapy, including the ability to run at larger microwave power to produce different species and highly charged ion beams. In this paper, the innovative solutions, used for the plasma containment chamber and for the permanent magnet hexapole holder, are presented to solve the insulation and structural issues. The choice of the different materials used is hereinafter discussed together with all the involved processes (spinning, curing and machining). The glass fibers and carbon fibers are used to reinforce polymer matrices and give rise to structural composites and composites by molding. The paper shows also some results of ion source commissioning along with next developments. Innovative active coupling techniques are planned to be tested to optimize the first pass wave absorption, which plays an important role in the coupling optimization of the new-generation ECRIS.  相似文献   

20.
A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号