首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of low-coherence enhanced backscattering (EBS) of light in random media when the spatial coherence length of illumination is much smaller than the transport mean free path has been poorly understood. We report that in weakly scattering discrete random media low-coherence EBS originates from time-reversed paths of double scattering. Low spatial coherence illumination dephases the time-reversed waves outside its finite coherence area, which isolates the minimal number of scattering events in EBS from higher-order scattering. Moreover, we show the first experimental evidence that the minimal number of scattering events in EBS is double scattering, which has been hypothesized since the first observation of EBS.  相似文献   

2.
In holographic applications, coherent lasers are indispensable source of illumination. Despite high intensity from coherent light sources, they fail in full-field image projection and illustrate speckle images due to high spatial coherence. This article demonstrates speckle-free high contrast computer-generated holographic image projection upon illumination with a perovskite–polystyrene 10 wt%-based random laser. Solvent-engineered efficient and durable perovskite and perovskite–polystyrene 10 wt%-based random lasers are fabricated. Optical characterizations are elucidated and controlled coherence random lasing operation is achieved under room temperature upon addition of polystyrene concentration 10 wt% on perovskite thin film. The addition of 10 wt% polystyrene concentration results in a low far-field divergence angle of ≈100. The controlled coherence in random lasers is necessary to produce a stable interference pattern and to retain the depth of field in holograms. Additionally, the holographic image projection using random lasers reduces diffraction noise, and exhibits high spatial resolution with full-field imaging. Moreover, this study is clear evidence of an effective strategy to achieve high-performance, indigenous designed-controlled coherence in disordered random lasing media and its application to novel holographic image projection.  相似文献   

3.
The axial resolution of optical coherence tomography (OCT) is determined by the coherence length of the light source. We demonstrate for the first time high-resolution OCT of biological tissue using a halogen lamp as the light source for a low coherence interferometer. High-resolution OCT imaging with 3.5 μm resolution was performed successfully for onion and porcine skin, although the coherence light power for illumination of a sample is as small as 100 nW.  相似文献   

4.
Choi Y  Yang TD  Lee KJ  Choi W 《Optics letters》2011,36(13):2465-2467
We developed an off-axis quantitative phase microscopy that works for a light source with an extremely short spatial coherence length in order to reduce the diffraction noise and enhance the spatial resolution. A dynamic speckle wave whose coherence length is 440 nm was used as an illumination source. To implement an off-axis interferometry for a source of low spatial coherence, a diffraction grating was inserted in the reference beam path. In doing so, an oblique illumination was generated without rotation of the wavefront, which leads to a full-field and single-shot phase recording with improved phase sensitivity of more than a factor of 10 in comparison with coherent illumination. The spatial resolution, both laterally and axially, and the depth selectivity are significantly enhanced due to the wide angular spectrum of the speckle wave. We applied our method to image the dynamics of small intracellular particles in live biological cells. With enhanced phase sensitivity and speed, the proposed method will serve as a useful tool to study the dynamics of biological specimens.  相似文献   

5.
Kim YL  Pradhan P  Kim MH  Backman V 《Optics letters》2006,31(18):2744-2746
We experimentally study the propagation of circularly polarized light in the subdiffusion regime by exploiting enhanced backscattering [(EBS), also known as coherent backscattering] of light under low spatial coherence illumination. We demonstrate for the first time, to the best of our knowledge, that a circular polarization memory effect exists in EBS over a large range of scatterers' sizes in this regime. We show that low-coherence EBS signals from the helicity preserving and orthogonal helicity channels cross over as the mean free path length of light in media varies, and that the cross point indicates the transition from multiple to double scattering in EBS.  相似文献   

6.
Low‐coherence optical microscopy or optical coherence microscopy uses light with short coherence length. The well‐known case is: “white‐light interferometry”, which became recently more known as: “optical coherence tomography”. However, when lenses and microscope objectives are used to create interferometric images, in what is known classically as “interference microscopy” or today as “full‐field optical coherence tomography” the spatial coherence starts to play a critical role. In this article the coherence effects in low‐coherence optical microscopy are reviewed. As this technology is becoming increasingly publicized due to its importance in three‐dimensional imaging, particularly of scattering biological media and optical metrology, the understanding of the fundamental physics behind it is essential. The interplay between longitudinal spatial coherence and temporal coherence and the effects associated with them are discussed in detail particularly when high numerical apertures are used. An important conclusion of this study is that a high‐contrast, high‐resolution system for imaging of multilayered samples is the one that uses narrowband illumination and high‐NA objectives with an index‐matching fluid. Such a system, when combined with frequency‐domain operation, can reveal nearly real‐time three‐dimensional images, and is thus competitive with confocal microscopy.  相似文献   

7.
研究了不同尺度参数和粒子浓度下的ZnO随机介质相干背散射强度的分布规律,采用时域有限差分法分析了不同浓度随机介质的光场能量空间分布,预测了随机激光器阈值的高低。结果表明:同一折射率的介质随着介质尺寸的增大,相干背散射的带宽变窄,局域化参量kl值相应增大,使得局域化程度呈较大幅度减弱趋势;并且随着介质浓度的增加,相干背散射的带宽变宽,局域化程度增强,阈值降低。相干背散射有着光子局域化的先期特征,现在已成为研究光子局域化出现与否的基本判断依据,对研究光子局域化以及随机激光器具有重要意义。  相似文献   

8.
Xin Y  He Y  Chen Y  Li J 《Optics letters》2010,35(23):4000-4002
The correlation between intensity fluctuations of light scattered from a quasi-homogeneous random media was analytically derived. We showed the correlation depends on spatial Fourier transforms of both the intensity and degree of spatial correlation of scattering potentials of the media, while the normalized correlation equals the squared modulus of the degree of spatial coherence of the scattered fields.  相似文献   

9.
We use the coherence of a light beam to encode spatial information. We apply this principle to obtain spatial superresolution in a limited aperture system. The method is based on shaping the mutual intensity function of the illumination beam in a set of orthogonal distributions, each one carrying the information for a different frequency bandpass or spatial region of the input object. The coherence coding is analogous to time multiplexing but with multiplexing time slots that are given by the coherence time of the illumination beam. Most images are static during times much longer than this coherence time, and thus the increase of resolution in our system is obtained without any noticeable cost.  相似文献   

10.
Full-field optical coherence microscopy (FF-OCM) and optically sectioned fluorescence microscopy are two imaging techniques that are implemented here in a novel dual modality instrument. The two imaging modalities use a broad field illumination to acquire the entire field of view without raster scanning. Optical sectioning is achieved in both imaging modalities owing to the coherence gating property of light for FF-OCM, and a structured illumination setup for fluorescence microscopy. Complementary image data are provided by the dual modality instrument in the context of biological tissue screening. FF-OCM imaging modality shows the tissue microarchitecture, while fluorescence microscopy highlights specific tissue features with cellular-level resolution by using targeting contrast agents. Complementary tissue morphology and biochemical features could potentially improve the understanding of cellular functions and disease diagnosis.  相似文献   

11.
一种新的生物医学用快速实时低相干显微成象原理   总被引:2,自引:0,他引:2  
高万荣  陶纯堪 《光子学报》1998,27(7):620-623
本文讨论了一种将共焦显微术与迈克耳逊干涉术相结合,并利用宽带低相干光源相干长度短的特点而形成的一种可对高密度非透明样品进行显微成象的方法,并将这种显微成象方法与共焦显微成象方法进行了比较,最后讨论了一种快速实时成象的原理,基于这种原理设计的仪器将为生物和医学工作者提供一种新的非侵入测量和诊断手段.  相似文献   

12.
Yao G  Wang LV 《Optics letters》1999,24(8):537-539
We built a polarization-sensitive optical coherence tomographic system and measured the two-dimensional depth-resolved full 4 x 4 Mueller matrix of biological tissue for what is believed to be the first time. The Mueller matrix measurements, which we made by varying the polarization states of the light source and the detector, yielded a complete characterization of the polarization property of the tissue sample. The initial experimental results indicated that this new approach reveals some tissue structures that are not perceptible in standard optical coherence tomography.  相似文献   

13.
Xingbing Chao 《中国物理 B》2021,30(8):84212-084212
Owing to the unique feature that the signal and reference waves of self-interference digital holography (SIDH) contain the same spatial information from the same point of object, compared with conventional digital holography, the SIDH has the special spatial coherence properties. We present a statistical optics approach to analyzing the formation of cross-correlation image in SIDH. Our study reveals that the spatial coherence of illumination light can greatly influence the imaging characteristics of SIDH, and the impact extent of the spatial coherence depends substantially on the recording distance of hologram. The theoretical conclusions are supported well by numerical simulation and optical experiments.  相似文献   

14.
In this paper, we present an approach that can be used for transmission of 2D spatial information through space-limited systems capable of transmitting even only a single spatial pixel. The input 2D object is illuminated with temporally incoherent illumination. The axial coherence length is very short and it equals only a few microns. Attached to the input object spatial random phase mask generates different axial shift for every pixel of the input. The temporal delays of the encoding (axial shifts) of every pixel are longer than the coherence length of the illuminating source. Therefore no temporal correlation exists between the various pixels of the input. A lens combines all spatial pixels into one point at its focal plane. Although the various spatial pixels were mixed together, since the random mask provided axial delay which was larger than the coherence length of the light source, the orthogonality between the spatial content of every pixel is preserved. The decoding system includes a lens that is positioned at the output of the resolution reduction system and it converts the output light into a plane wave containing all the spatial information of the original image mixed together in all of its pixels. By interfering this plane wave with the same plane wave after passing through the same random spatial coding mask, the spatial information of every pixel of the input object is recovered.  相似文献   

15.
This paper addresses some parameters that have a significant effect on wave scattering in random media. These parameters are: target configuration, including size and curvature; random media strength, represented in the spatial coherence length; and incident wave polarization. Here, I present numerical calculations for the radar cross-section (RCS) of conducting targets and analyze the backscattering enhancement with different configurations. I postulate a concave illumination region and consider targets taking large sizes of about five wavelengths. In this aspect, waves scattering from targets are assumed to propagate in free space and a random medium with H-polarization. This polarization produces what is well known as creeping waves which in turn have an additional effect on the scattering waves that is absent in the case of E-polarization.  相似文献   

16.
We propose and demonstrate the feasibility of a new microscopic technique, which is based on variable coherence illumination. By manipulating the spatial coherence properties of an incident evanescent field, subwavelength resolution is achieved over a large field of view from far-field intensity measurements.  相似文献   

17.
Xu M 《Optics letters》2008,33(11):1246-1248
An analytical theory for coherent backscattering (CBS) of low-coherence light is presented. An expression linking the CBS profile to the radial distribution of the incoherent backscattered light is derived when the incident light is partially spatially coherent. The backscattered snake light, which has experienced exactly two large-angle scatterings, is taken into account together with the diffuse light in the analysis. Monte Carlo simulations demonstrate that the model describes well the CBS profile as long as the spatial coherence length, L(c), of the incident beam is larger than the scattering mean free path of light in the medium. The intensity of the enhanced backscattered light in the exact backscattering direction and the width of the CBS cone are found to be proportional to L(c) and L(c)(-1), respectively, in the limit of small L(c).  相似文献   

18.
Dynamic light scattering in localized coherence volumes   总被引:2,自引:0,他引:2  
We introduce a novel light-scattering technique for investigating the dynamics of random media with a broad range of optical densities. By use of the spatial coherence properties of a single-mode optical fiber and the temporal coherence of a broadband source, the measurement volume is isolated at the end of the optical waveguide. Optical mixing between the fluctuating scattered light and the Fresnel-reflected field at the fiber-medium interface is analyzed directly in the frequency domain. The unique characteristics of this new technique are discussed in the context of simultaneous measurement of average scatterer size and concentration in dense colloidal suspensions.  相似文献   

19.
We present a theoretical basis for calculation of the angular profile of the coherent backscattering intensity under low spatial coherence illumination. We take into account two contributions to the intensity, namely, the diffusion contribution and the contribution from the waves that experience the small-angle multiple scattering before and after single deflection in the backward direction. The latter contribution describes transport of light at subdiffusion length scales and is responsible for the wings of the backscattering angular profile. Our results are in good agreement with data of Monte-Carlo simulations and experiment.  相似文献   

20.
The performance of a two-dimensional heterodyne detection technique in optical coherence tomography (OCT) was studied. This technique, which is based on the frequency synchronous detection method, enables the use of an imager such as a charge coupled device (CCD) camera as a heterodyne sensor array, so that horizontal cross-sectional image can be acquired in real time without lateral scanning. OCT measurements of scattering media including a biological object were demonstrated. To evaluate the influence of phase fluctuations on the present technique, we measured and analyzed the statistical relative-standard-deviation of heterodyne signal intensity as a function of the random phase shifts between two consecutive CCD frames. Practical limitations in the signal stability and possible solutions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号