首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Membrane-spanning phospholipid bolaamphiphiles either alone or as a constituent of a multicomponent lipid membrane may prove to be facile building blocks for generating robust bioactive membrane-mimetic assemblies. We have previously reported the synthesis of asymmetric dialkyl phospholipid bolaamphiphiles that contain ester linked phosphatidylcholine and amine functionalities at opposite chain ends. In this report, we describe the synthesis of phospholipid bolaamphiphiles that are conjugated to biotin via the terminal amine with or without a poly(ethylene oxide) spacer arm of varying chain length. The behavior of biotinylated bolaamphiphiles as a self-assembled monolayer at an air-water interface was characterized by epi-fluorescence microscopy and revealed that domain structure and pi-A isotherms were substantially influenced by linker type and size. Substrate bound assemblies were produced by Langmuir-Blodgett deposition onto planar substrates coated with an avidin derivatized polyelectrolyte multilayer. Significantly, external reflectance infrared spectroscopy confirmed the fabrication of bolaamphiphile thin films that display extended stability in vitro.  相似文献   

2.
The application of supported lipid bilayer systems as molecular sensors, diagnostic devices, and medical implants is limited by their lack of stability. In an effort to enhance the stability of supported lipid bilayers, three pairs of phosphatidylcholine lipids were designed to cross-link at the termini of their 2-position acyl chain upon the formation of lipid bilayers. The cross-linked lipids span the lipid bilayer, resembling naturally occurring bolaamphiphiles that stabilize archaebacterial membranes against high temperatures. The three reactions investigated here include the acyl chain cross-linking between thiol and bromine groups, thiol and acryloyl groups, and cyclopentadiene and acryloyl groups. All three reactive lipid pairs were found to cross-link in liposomal membranes, as determined by thin-layer chromatography, ion-spray mass spectrometry, and 1H NMR. The monolayer film properties of the reactive amphiphiles were characterized by surface pressure-area isotherms and showed that stable monolayers formed at the air-water interface with limiting molecular areas comparable to that of pure saturated phosphatidylcholine lipids. Langmuir-Blodgett bilayers of dimyristoylphosphatidylcholine incorporating 15 mol % of the reactive thiol and acryloyl lipids had diffusion coefficients comparable with pure dimyristoylphosphatidylcholine, while bilayers with more than 25 mol % of the reactive lipids were immobile, suggesting that interleaflet cross-linking of the lipids inhibited membrane diffusion. Our results show that the reactive lipids can cross-link within a lipid bilayer and are suitable for assembling supported lipid bilayers using Langmuir-Blodgett deposition. By using terminally reactive amphiphiles to build up supported lipid bilayers with cross-linked leaflets, bolaamphiphiles can be incorporated into asymmetric solid supported membranes to increase their stability in biosensor and medical implant applications.  相似文献   

3.
Three single-chain bolaamphiphiles containing two salicylidene units per molecule as the rigid segment were synthesized. Their aggregation behavior in water and ethanol has been studied. They can form monolayer membranes not only in water solution but also in pure ethanol. The presence of a relatively short methylene chain as a spacer at the center of the molecule has a dramatic influence on the morphology of the aggregates formed. Copyright 2001 Academic Press.  相似文献   

4.
双头基两亲分子研究进展   总被引:4,自引:0,他引:4  
吕庆  贡浩飞  刘鸣华 《化学进展》2001,13(3):161-166
本文介绍了双头基两亲分子的结构特征与性质, 概述了由双头基两亲分子在气液界面形成的单分子膜以及在体相中形成的囊泡的特征, 并介绍了这类两亲分子在催化、生物矿化、药物缓释、膜破解以及纳米材料等方面的应用研究。对其研究前景进行了展望。  相似文献   

5.
The present note describes the use of surface pressure measurements (Langmuir monolayer technique) for the analysis of interactions of two different anthracyclines (adriamycin and daunorubicin) with a non-ionic, zwitterionic phospholipid monolayer, at the air-water interface. Because the surface membrane of the cell is the first barrier encountered by the anthracyclines in the treatment of cancer, drug-membrane interactions studied in model (monolayers or bilayers) and natural systems play an important role in the understanding of the bioactivity properties of these molecules. We report here the rate constants of the adsorption process of adriamycin and daunorubicin in the presence of a zwitterionic phospholipid monolayer at the air-water interface. Because interactions with the lipid monolayer strongly depend on the molecular packing of the lipid, we investigated this process at a relatively low surface pressure (7 mN/m), the interactions being favoured by the gaseous and liquid expanded structure of the lipid monolayer. The apparent molecular area of these molecules during the insertion into the lipid film and their interactions with the phospholipid polar head groups was evaluated and the estimated percentage of anthracyclines at the interface after adsorption into the lipid monolayer is briefly discussed. The rate constants for the adsorption and desorption process at the water-monolayer interface have been calculated on the basis of a single-exponential model. The observed difference of these parameters for daunorubicin and adriamycin suggests a different interaction of these anthracyclines during the adsorption to and/or penetration across the phospholipid monolayer.  相似文献   

6.
Model membrane systems are gaining more and more interest both for basic studies of membrane-related processes as well as for biotechnological applications. Several different model systems have been reported among which the tethered bilayer lipid membranes (tBLMs) form a very attractive and powerful architecture. In all the proposed architectures, a control of the lateral organization of the structures at a molecular level is of great importance for an optimized preparation. For tBLMs, a homogeneous and not too dense monolayer is required to allow for the functional incorporation of complex membrane proteins. We present here an alternative approach to the commonly used self-assembly preparation. Lipids are spread on the air-water interface of a Langmuir film balance and form a monomolecular film. This allows for a better control of the lateral pressure and distribution for subsequent transfer to solid substrates. In this paper, we describe the properties of the surface monolayer, in terms of surface pressure, structure of the lipid molecule, content of lipid mixtures, temperature, and relaxations features. It is shown that a complete mixing of anchor-lipids and free lipids can be achieved. Furthermore, an increase of the spacer lengths and a decrease of the temperature lead to more compact films. This approach is a first step toward the fully controlled assembly of a model membrane system.  相似文献   

7.
New dissymmetrical neutral-cationic or anionic-cationic alpha,omega-diamido bolaamphiphiles have been synthesized in which the polar headgroups are derived from alginate and glycine betaine and which exhibit monolayer lipid membrane vesicles, large lamellae and rods.  相似文献   

8.
We report herein the synthesis of a series of polymerizable bolaamphiphiles containing a diacetylene group and mesogenic unit and their self-organization behaviors in bulk and at interface. The polymerizable bolaamphiphiles are noted as DPDA-n, where n refers to the spacer length of alkyl chain. DPDA-10 with suitable spacer length can self-organize into stable cylindrical micellar nanostructures, and these nanostructures have preferred orientation regionally when adsorbed at the mica/water interface. It is confirmed that the micellar nanostructure of DPDA-10 can be polymerized both in the bulk solution and in the film by UV irradiation. The emission property of DPDA-10 after UV irradiation has been significantly enhanced in comparison to that before polymerization, which may be due to the extension of the conjugated system arising from the transformation of the diacetylene group into polydiacetylene upon polymerization. In addition, the self-organization of DPDA-n is dependent on the spacer length. DPDA-7 with a short spacer length forms an irregular flat sheet structure with many defects; DPDA-15 with a long spacer length forms rodlike micellar structures. Thus, this work may provide a new approach for designing and fabricating organic functional nanostructured materials.  相似文献   

9.
To understand the role of the puroindolines (PIN-a and PIN-b) in the defense mechanism and stabilization of lipid films in the gas cell of bread dough, we have isolated the proteins and lipids from wheat seed endosperm and studied their interaction at the air/water interface using a Langmuir trough. The nature and shape of the pressure–area compression isotherms of the lipid monolayer in the presence of puroindolines in the subphase depended on the concentration of protein. A distinct phase separation occurred, when the concentration of protein in the subphase increased. The interfacial elasticity of the lipid monolayer in the presence of puroindolines in the subphase was higher than the pure lipid. Injection of protein beneath the preexisting lipid monolayer resulted in the increase of surface pressure due to the penetration of proteins. The extent of penetration depended on the nature of lipid head groups as well as on the initial surface pressure. The penetration of puroindolines to lipid monolayer was observed to be zero after crossing a critical initial surface pressure. The magnitude of the critical initial surface pressure for anionic lipids was significantly higher than the zwitterionic and nonionic lipids. The experimental results showed that both PIN-a and PIN-b had more affinity for anionic polar lipids than the neutral polar lipids and stabilized the lipid monolayer.  相似文献   

10.
The membranes of thermophilic archaebacteria are characterized by the presence of unusual bipolar saturated isoprenoid lipids. In order to investigate their molecular arrangement in the membrane and a possible influence on transport properties, we studied black films made from lipids of Caldariella acidophila, one of the most thermophilic archaebacteria. Details on the kinetics of formation at various temperatures are presented.Capacitance, compressibility and valinomycin-induced conductance values are compared with the corresponding data for a glycerol-monooleate (GMO) bilayer. A very peculiar behavior is presented by the bipolar lipid films studied. In fact, the values of conductance are more than two orders of magnitude lower than those of a GMO bilayer, while the values of capacitance and compressibility do not depend appreciably on the solvent in which the lipid is dispersed (in contrast with a GMO bilayer, where there is a 100% change).The results are discussed in terms of a proposed model of a monolayer organization of bipolar lipids and of the unusual composition of the hydrophobic core of the membrane.  相似文献   

11.
在气/液界面上, 阳离子表面活性剂可以通过静电作用与阴离子型的脱氧核糖核酸(DNA)分子形成复合膜, 并压缩沉积得到LB(Langmuir-Blodget)膜. 利用表面压-表面积(π-A)曲线、原子力显微镜(AFM)和石英晶体微天平(QCM)研究了阳离子Gemini表面活性剂([C18H37(CH3)2N+-(CH2)s-N+(CH3)2C18H37]·2Br-, 简写为18-s-18, s=3, 4, 6, 8, 10, 12)与DNA(双链DNA(dsDNA), 单链DNA(ssDNA))之间的相互作用, 并对18-s-18在不同下相表面的分子面积进行了比较. 实验结果表明连接基团和下相的DNA对Gemini表面活性剂在气/液界面上的性质有很大影响. 此外, Gemini表面活性剂在界面上对DNA的吸附能力与它们之间的相互作用方式密切相关.  相似文献   

12.
The glycosylphosphatidyl inositol(GPI)-anchored proteins are localized on the outer of the plasma membrane and clustered in membrane microdomain known as lipid rafts. Among them, mammalian alkaline phosphatase(AP) is an enzyme widely distributed. So, it has important biological significance to study the combination of AP with lipid monolayer. In our work, the interaction between AP and sphingomyelin has been studied at the air-buffer interface as a biomimetic membrane system by the Langmuir film technique and atomic force microscopy. The surface pressure-area isotherm for the mixed alkaline phosphatase/sphingomyelin monolayer shown the presence of a transition from a liquid-expanded phase to the liquid-expanded/liquidcondensed coexist phase. And the surface compressional modulus suggested the mixed alkaline phosphatase/sphingomyelin monolayer has larger compressibility compared with the pure sphingomyelin monolayer. Besides, according to the micrographs, we inferred when combined with lipid monolayer at the air-buffer interface, the AP molecules formed polymer not multilayer or micelle. And, according to the limiting molecules area of AP, we inferred that 12 AP molecules formed a hexagon polymer unit.  相似文献   

13.
Interaction of mitochondrial creatine kinase (mtCK) with either synthetic or natural zwitterionic or acidic phospholipids was monitored by surface pressure measurements. Injection of mtCK beneath a monolayer at very low surface pressure results in a large increase in the apparent area per lipid molecule reflecting the intrinsic surface activity of the protein. This effect is particularly pronounced with anionic phospholipid-containing films. Upon compression to high lateral pressure, the protein is squeezed out of the lipid monolayer. On the contrary, mtCK injected beneath a monolayer compressed at 30 mN/m, does not insert into the monolayer but is concentrated below the surface by anionic phospholipids as evidenced by the immediate and strong increase in the apparent molecular area occurring upon decompression. Below 8 mN/m the protein adsorbs to the interface and remains intercalated until the lateral pressure increases again. The critical pressure of insertion is higher for anionic lipid-containing monolayers than for films containing only zwitterionic phospholipids. In the former case it is markedly diminished by NaCl. The adsorption of mtCK depends on the percentage of negative charges carried by the monolayer and is reduced by increasing NaCl concentrations. However, the residual interaction existing in the absence of a global negative charge on the membrane may indicate that this interaction also involves a hydrophobic component.  相似文献   

14.
A series of bolaamphiphiles with 4-hydroxycinnamoyl head groups and different length of the alkyl spacers (n = 6-12) were designed to investigate their photochemistry in the organized films obtained from the air/water interface. It has been found that both the length and odd-even number of the spacers can finely tune the molecular packing as well as the photochemistry. When the spacer length was changed from 6 to 12 methylene units, the assemblies changed from J aggregate to H aggregate. The molecules with even-numbered polymethylene spacer tend to form three-dimensional nanorod structure at the air/water interface. For the assembly of derivatives with odd-numbered spacers, diverse morphologies such as nanospirals and nanofibers were observed depending on the chain length and the surface pressures. The different packing of bolaamphiphiles could subsequently affect the photochemistry of the cinnamoyl groups in the organized films. The spacer effect in the assembly can be understood from the cooperation between H-bond of the phenolic hydroxyl and the amide groups, π-π stacking as well as the hydrophobic interactions of the alkyl spacer. A packing model was proposed to explain the phenomenon.  相似文献   

15.
A series of membrane-spanning bolaamphiphiles (molecules with two hydrophilic end groups connected by a hydrophobic linker) were prepared by a modular synthetic method and evaluated for their abilities to affect the dynamics of a surrounding bilayer membrane. The goal was to determine if the bolaamphiphiles promote the translocation of phospholipids across vesicle membranes. The bolaamphiphiles were incorporated at low levels (up to 5 mol %) in vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Inward translocation assays were performed using fluorescent, NBD-labeled phospholipid probes with phosphocholine (PC) or phosphoglycerol (PG) headgroups. The membrane-spanning bolaamphiphiles promote the translocation of both phospholipid probes in the order PG > PC, whereas shorter bolaamphiphiles (structures that must adopt a U-shape and keep both end groups in the same leaflet of the membrane), and regular amphiphiles with one hydrophilic end group, are inactive. These results are an exception to the rule-of-thumb that membrane-spanning bolaamphiphiles are inherently membrane-stabilizing molecules that inhibit all types of membrane transport.  相似文献   

16.
The interaction between glucose oxidase (GOx) and phospholipid monolayers is studied at the 1,2-dichloroethane/water interface by electrochemical impedance spectroscopy. Electrochemical experiments show that the presence of GOx induces changes in the capacitance curves at both negative and positive potentials, which are successfully explained by a theoretical model based on the solution of the Poisson-Boltzmann equation. These changes are ascribed to a reduced partition coefficient of GOx and an increase of the permittivity of the lipid hydrocarbon domain. Our results show that the presence of lipid molecules enhances the adsorption of GOx molecules at the liquid/liquid interface. At low lipid concentrations, the adsorption of GOx is probably the first step preceding its penetration into the lipid monolayer. The experimental results indicate that GOx penetrates better and forms more stable monolayers for lipids with longer hydrophobic tails. At high GOx concentrations, the formation of multilayers is observed. The phenomenon described here is strongly dependent on 1) the GOx and lipid concentrations, 2) the nature of the lipid, and 3) the potential drop across the interface.  相似文献   

17.
We have combined experiments with atomic-scale molecular dynamics simulations to consider the influence of ethanol on a variety of lipid membrane properties. We first employed isothermal titration calorimetry together with the solvent-null method to study the partitioning of ethanol molecules into saturated and unsaturated membrane systems. The results show that ethanol partitioning is considerably more favorable in unsaturated bilayers, which are characterized by their more disordered nature compared to their saturated counterparts. Simulation studies at varying ethanol concentrations propose that the partitioning of ethanol depends on its concentration, implying that the partitioning is a nonideal process. To gain further insight into the permeation of alcohols and their influence on lipid dynamics, we also employed molecular dynamics simulations to quantify kinetic events associated with the permeation of alcohols across a membrane, and to characterize the rotational and lateral diffusion of lipids and alcohols in these systems. The simulation results are in agreement with available experimental data and further show that alcohols have a small but non-vanishing effect on the dynamics of lipids in a membrane. The influence of ethanol on the lateral pressure profile of a lipid bilayer is found to be prominent: ethanol reduces the tension at the membrane-water interface and reduces the peaks in the lateral pressure profile close to the membrane-water interface. The changes in the lateral pressure profile are several hundred atmospheres. This supports the hypothesis that anesthetics may act by changing the lateral pressure profile exerted on proteins embedded in membranes.  相似文献   

18.
d-alpha-Tocopheryl polyethylene glycol 1000 succinate (TPGS) has great potential in pharmacology and nanotechnology. The present work investigated the molecular behaviour of TPGS at the air-water interface, its effect on a model bio-membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipid monolayer, and the interaction between the TPGS coated nanoparticles with the lipid model membrane. Paclitaxel loaded polymeric nanoparticles with TPGS as surfactant stabiliser were fabricated and characterised in terms of their drug incorporation capability and release kinetics. The result showed that TPGS exhibited notable effect on the surface properties of air-water interface as well as the lipid monolayer. The inter-particle force and the interaction between nanoparticles and lipid monolayer varied with the surface substance. The penetration of various nanoparticles into the model membrane indicated that an optimal balance between hydrophilicity and hydrophobicity on nanoparticle surface is needed to achieve an effective cellular uptake of nanoparticles. The results also demonstrate that the drug incorporation capability and the release characteristics of drug-loaded nanoparticles can be influenced by surfactant stabiliser.  相似文献   

19.
The behavior of the symmetric long-chain bolaamphiphiles dotriacontane-1,32-diyl bis[2-(trimethylammonio)ethyl phosphate] (PC-C32-PC), and dotriacontane-1,32-diyl bis[2-(dimethylammonio)ethyl phosphate] (Me(2)PE-C32-Me(2)PE) at the air-water interface was investigated by means of temperature-dependent film-balance measurements and Brewster angle microscopy. Upon compression of the monolayer the isotherms show a strong surface pressure increase. We assume that at high pressure the monolayer consists of molecules in a reversed U-shaped conformation. At an area of 0.9-1.1 nm(2) per molecule a plateau is reached for both bolaamphiphiles, which marks the beginning of an aggregate formation on the water surface. The plateau pressure increases with increasing temperature. For PC-C32-PC at 6.7 degrees C curved shorter fibrous domains with a diameter of 20-30 mum are seen on the water surface, whereas at 29.2 degrees C stripelike domains with a thickness of 200-500 mum are observed. Isotherms recorded within this temperature range show a characteristic break within the steep slope marking a region where a mixture or a hybrid form of both structures exists. Me(2)PE-C32-Me(2)PE in its zwitterionic state at low pH forms microcrystals on the water surface, whose formation is kinetically retarded. Depending on the temperature, the aqueous subphase is more or less homogeneously covered with a crystalline-like film. In contrast, no aggregates are observed at pH 10 when the bolaamphiphile is negatively charged.  相似文献   

20.
用表面压-面积等温线,原子力显微镜(AFM)和X射线衍射(XRD)对两种具有不同取代位置的新型双头基两亲分子(bolaamphiphile)A和B在气液界面形成的Langmuir铺展膜的结构进行了研究,化合物1,20-二十碳二β-萘酯(B)在气液界面形成了拉伸型 Langmuir单分子膜,而化合物1,20-二十碳二α-萘酯(A)在气液界面则形成了具有三层分子厚度的二维结晶膜.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号