首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
This contribution is concerned with Gumbel limiting results for supremum Mn=supt[0,Tn]?|Xn(t)| with Xn,nN2 centered Gaussian random fields with continuous trajectories. We show first the convergence of a related point process to a Poisson point process thereby extending previous results obtained in [8] for Gaussian processes. Furthermore, we derive Gumbel limit results for Mn as n and show a second-order approximation for E{Mnp}1/p for any p1.  相似文献   

4.
5.
6.
7.
8.
The purpose of this article is to compute the mod 2 cohomology of Γq(K), the mapping class group of the Klein bottle with q marked points. We provide a concrete construction of Eilenberg–MacLane spaces Xq=K(Γq(K),1) and fiber bundles Fq(K)/ΣqXqB(Z2×O(2)), where Fq(K)/Σq denotes the configuration space of unordered q-tuples of distinct points in K and B(Z2×O(2)) is the classifying space of the group Z2×O(2). Moreover, we show the mod 2 Serre spectral sequence of the bundle above collapses.  相似文献   

9.
10.
11.
For an oriented 2-dimensional manifold Σ of genus g with n boundary components, the space Cπ1(Σ)/[Cπ1(Σ),Cπ1(Σ)] carries the Goldman–Turaev Lie bialgebra structure defined in terms of intersections and self-intersections of curves. Its associated graded Lie bialgebra (under the natural filtration) is described by cyclic words in H1(Σ) and carries the structure of a necklace Schedler Lie bialgebra. The isomorphism between these two structures in genus zero has been established in [13] using Kontsevich integrals and in [2] using solutions of the Kashiwara–Vergne problem.In this note, we give an elementary proof of this isomorphism over C. It uses the Knizhnik–Zamolodchikov connection on C\{z1,zn}. We show that the isomorphism naturally depends on the complex structure on the surface. The proof of the isomorphism for Lie brackets is a version of the classical result by Hitchin [9]. Surprisingly, it turns out that a similar proof applies to cobrackets.Furthermore, we show that the formality isomorphism constructed in this note coincides with the one defined in [2] if one uses the solution of the Kashiwara–Vergne problem corresponding to the Knizhnik–Zamolodchikov associator.  相似文献   

12.
13.
14.
In this paper we determine the projective unitary representations of finite dimensional Lie supergroups whose underlying Lie superalgebra is g=A?k, where k is a compact simple Lie superalgebra and A is a supercommutative associative (super)algebra; the crucial case is when A=Λs(R) is a Graßmann algebra. Since we are interested in projective representations, the first step consists in determining the cocycles defining the corresponding central extensions. Our second main result asserts that, if k is a simple compact Lie superalgebra with k1{0}, then each (projective) unitary representation of Λs(R)?k factors through a (projective) unitary representation of k itself, and these are known by Jakobsen's classification. If k1={0}, then we likewise reduce the classification problem to semidirect products of compact Lie groups K with a Clifford–Lie supergroup which has been studied by Carmeli, Cassinelli, Toigo and Varadarajan.  相似文献   

15.
16.
17.
Let XZnZ denote the unitary Cayley graph of ZnZ. We present results on the tightness of the known inequality γ(XZnZ)γt(XZnZ)g(n), where γ andγt denote the domination number and total domination number, respectively, and g is the arithmetic function known as Jacobsthal’s function. In particular, we construct integers n with arbitrarily many distinct prime factors such that γ(XZnZ)γt(XZnZ)g(n)?1. We give lower bounds for the domination numbers of direct products of complete graphs and present a conjecture for the exact values of the upper domination numbers of direct products of balanced, complete multipartite graphs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号