首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of luminescent trinuclear platinum(II) alkynyl complexes containing dihydro-5H-diindeno[1,2-a;1′,2′-c]fluorene (truxene) as the core and aryl alkynyl ligands with different electronic properties at the periphery has been successfully synthesized and characterized. The electronic absorption, emission, nanosecond transient absorption and electrochemical properties of these complexes have been reported. These complexes showed long-lived emissions in degassed benzene solution at room temperature, and their emissions have been assigned to originate from triplet states of intraligand (IL) character with some mixing of metal-to-ligand charge-transfer (MLCT) character. The luminescent platinum(II) alkynyl complexes are found to show two-photon absorption (2PA) and two-photon induced luminescence (TPIL) properties, and their two-photon absorption cross-sections have been determined to be 6-51 GM upon excitation at 720 nm.  相似文献   

2.
Yang ZD  Feng JK  Ren AM 《Inorganic chemistry》2008,47(23):10841-10850
In this paper, we have theoretically investigated bis((4-phenylethynyl)phenyl) ethynyl)bis(trimethylphosphine)platinum(II) (PE2) and its analogs three platinum acetylide complexes (1-3) that feature highly pi-conjugated ligands (alkynyl-dimethylfluorene substituted with electron-donating or -withdrawing moieties). The geometrical and electronic structures are calculated at the ECP60MWB//6-31G*(H, C, P, N, S) basis set level by the density functional theory (DFT) method; one-photon absorption properties have been calculated by using time-dependent DFT (TDDFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods, and two-photon absorption (TPA) properties are obtained with the ZINDO/sum-over-states method. The values of beta(sp) and beta(d) for Pt are adjusted to -1 eV and -28.5 eV, respectively, to make one-photon absorption spectra calculated by ZINDO closest to the experimental data and TDDFT results. The calculated results indicate that all molecules in this work (involving cis isomers of molecules 1-3) take on two TPA peaks in the 600-800 nm region. The peak at 700-750 nm should not be simply attributed to the appearance of noncentrosymmetric cis isomers in solution, although trans and cis isomers adhere to a different selection rule. Every TPA peak results from its transition character. Molecules 1-3 show greater two-photon absorption strength compared with PE2 and retain good transparency.  相似文献   

3.
We evaluated the o-nitrobenzyl platform for designing photolabile protecting groups with red-shifted absorption that could be photolyzed upon one- and two-photon excitation. Several synthetic pathways to build different conjugated o-nitrobenzyl backbones, as well as to vary the benzylic position, are reported. Relative to the reference 4,5-dimethoxy-2-nitrobenzyl group, several o-nitrobenzyl derivatives exhibit a large and red-shifted one-photon absorption within the near-UV range. Uncaging after one-photon excitation was studied by measuring UV-visible absorption and steady-state fluorescence emission on model caged ethers and esters. In the whole series investigated, the caged substrates were released cleanly upon photolysis. Quantum yields of uncaging after one-photon absorption lie within the 0.1-1 % range. We observed that these drop as the maximum wavelength absorption of the o-nitrobenzyl protecting group is increased. A new method based on fluorescence correlation spectroscopy (FCS) after two-photon excitation was used to measure the action uncaging cross section for two-photon excitation. The series of o-nitrobenzyl caged fluorescent coumarins investigated exhibit values within the 0.1-0.01 Goeppert-Mayer (GM) range. Such results are in line with the low quantum yields of uncaging associated with cross-sections of 1-50 GM for two-photon absorption. Although the cross-sections for one- and two-photon absorption of o-nitrobenzyl photolabile protecting groups can be readily improved, we emphasize the difficulty in enlarging the corresponding action uncaging cross-sections in view of the observed trend of their quantum yield of uncaging.  相似文献   

4.
The synthesis, one-photon photophysics and two-photon absorption (2PA) of three dipolar D-π-A 4-[9,9-di(2-ethylhexyl)-7-diphenylaminofluoren-2-yl]-2,2':6',2'-terpyridine and their platinum chloride complexes with different linkers between the donor and acceptor are reported. All ligands exhibit (1)π,π* transition in the UV and (1)π,π*/(1)ICT (intramolecular charge transfer) transition in the visible regions, while the complexes display a lower-energy (1)π,π*/(1)CT (charge transfer) transition in the visible region in addition to the high-energy (1)π,π* transitions. All ligands and the complexes are emissive at room temperature and 77 K, with the emitting excited state assigned as the mixed (1)π,π* and (1)CT states at RT. Transient absorption from the ligands and the complexes were observed. 2PA was investigated for all ligands and complexes. The two-photon absorption cross-sections (σ(2)) of the complexes (600-2000 GM) measured by Z-scan experiment are much larger than those of their corresponding ligands measured by the two-photon induced fluorescence method. The ligand and the complex with the ethynylene linker show much stronger 2PA than those with the vinylene linker.  相似文献   

5.
A series of luminescent multinuclear platinum(II) alkynyl complexes containing triethynylbenzene or 1,4-bis(3,5-diethynylphenyl)buta-1,3-diyne as cores has been successfully synthesized and characterized. The electronic absorption, emission, nanosecond transient absorption and electrochemical properties of these complexes have been reported. These complexes show long-lived emissions in degassed benzene solution and in alcoholic glass at 77 K. Moreover, they are found to exhibit two-photon absorption (2PA) and two-photon induced luminescence (TPIL) properties, and their two-photon absorption cross-sections have been determined to be 6-191 GM upon excitation at 720 nm. Through a systematic comparison, it has been found that tetra- and hexanuclear platinum(II) complexes show better 2PA and TPIL properties than their di- and trinuclear counterparts.  相似文献   

6.
The triplet kinetics of a conjugated polymer, polyspirobifluorene, have been studied using time resolved photoinduced absorption spectroscopy and gated emission delayed fluorescence. Working on isolated polymer chains in dilute solution, we pay particular attention to the buildup and decay of the triplet states following intersystem crossing from the excited singlet state. Confirmation of intersystem crossing as a monomolecular cold process has been made. At high excitation powers an initial fast decay of the triplet has been observed; this is attributed to intrachain triplet-triplet annihilation. From this observation we estimate the lower bound of the intersystem crossing yield as 1.2%. We also calculate the intrachain annihilation constant to be (2.9+/-0.1)x 10(8) cm(3) s(-1).  相似文献   

7.
《Chemical physics》2001,263(2-3):471-490
The triplet saturable absorption behaviour of the xanthene dyes eosin Y, erythrosin B, and rose bengal and of the fullerene molecule C70 is studied. The molecules are excited to the S1-state by intense picosecond pulses (wavelength λP=527 nm). They relax dominantly to the triplet system by intersystem crossing. The triplet–triplet saturable absorption is investigated with time-delayed intense picosecond pulses (wavelength λL=1054 nm) in the transparency region of the molecules in the singlet ground state. Higher excited-state triplet absorption cross-sections and higher excited-state triplet relaxation times are determined by numerical simulation of the experimental results. Time-resolved fluorescence measurements reveal higher excited-state triplet to singlet back-intersystem-crossing and multi-step triplet photoionization. Additionally the two-photon absorption cross-sections at λL=1054 nm are determined by measurement of the fundamental pulse two-photon induced fluorescence relative to the second-harmonic pulse single-photon induced fluorescence.  相似文献   

8.
Femtosecond transient absorption spectroscopy was employed to determine quantitatively the ultrafast S1-T1 intersystem crossing in a 2-substituted 9,10-anthraquinone derivative (3), kisc = 2.5 x 10(12) s-1. Notwithstanding this rapid process, photoexcitation of dyad 1 is followed by competition between intersystem crossing and intramolecular charge separation, the latter leading to a short-lived (2 ps) singlet charge-transfer (CT) state. The local triplet state itself undergoes slower charge separation to populate a relatively long-lived (130 ns) triplet CT state. An earlier report about the formation of an extremely long-lived CT state (> 900 micros) in 1 was found to be erroneous and was related to the sacrificial photo-oxidation of the dimethylsulfoxide solvent used in that study. Finally, some important criteria have been formulated for future experimental validation of "unusually long-lived" CT states.  相似文献   

9.
Two-photon excitation spectra have been recorded over the large spectral range of 540-1000 nm for five phenylene-vinylene oligomers that differ in the length of the conjugated pi system. The significant changes observed in the two-photon excitation spectra and absorption cross sections as a function of this systematic change in the chromophore are discussed in light of (1) the corresponding one-photon absorption spectra and (2) high-level density functional response theory calculations performed on analogues of these systems. The results obtained illustrate one way to exploit parameters that influence nonlinear optical properties in large organic molecules. Specifically, data are provided to indicate that when the frequency of the laser used in the two-photon experiment is nearly-resonant with an allowed one-photon transition, significant increases in the two-photon absorption cross section can be realized. This phenomenon of the so-called resonance enhancement allows for greater control in obtaining an optimal response when using existing two-photon chromophores, and provides a much-needed guide for the systematic development and efficient use of two-photon singlet oxygen sensitizers.  相似文献   

10.
Singlet fission, or multiple exciton generation, has been purported to occur in a variety of material systems. Given the current interest in exploiting this process in photovoltaics, we search for the direct signature of singlet fission, phosphorescence from the triplet state, in a model polymeric organic semiconductor for which photoinduced absorption experiments have implied a tripling of the intersystem crossing yield at the onset of fission. Fluorescence and phosphorescence are clearly discriminated using a picosecond gated photoluminescence excitation technique, at variable temperature. At low excitation densities, in a quasi-steady-state experiment, we detect no change of the relative triplet yield to within 4% for photon energies of almost three times the triplet energy of 2.1 eV. Identical results are obtained under nonlinear two-photon excitation. We conclude that assignments of singlet fission based on induced absorptions alone should be treated with caution and may substantially overestimate excited-state intersystem crossing yields, raising questions with regards to the applicability of the process in devices.  相似文献   

11.
Time-dependent density functional theory (TD-DFT) is applied to model one-photon (OPA) and two-photon (TPA) absorption spectra in a series of conjugated cytotoxic dyes. Good agreement with available experimental data is found for calculated excitation energies and cross sections. Calculations show that both OPA and TPA spectra in the molecules studied are typically dominated by two strong peaks corresponding to different electronic states. We find that donor-acceptor strengths and conjugated bridge length have a strong impact on the cross-section magnitudes of low- and high-frequency TPA maxima, respectively. These trends are analyzed in terms of the natural transition orbitals of the corresponding electronic states. Observed structure-property relationships may have useful implications on design of organic conjugated chromophores with tunable two-photon absorption properties for photodynamic therapy applications.  相似文献   

12.
By means of time-dependent density functional theory, we calculate the two-photon cross-sections for the lowest relevant excitations in some model chromophores of intrinsically fluorescent proteins. The two-photon strength of the first, one-photon active transition varies among the various chromophores, in line with experimental findings. Interestingly, additional transitions with large two-photon cross-sections are found in the 500-700 nm region arising from near-resonant enhancement, as revealed by few-state model analysis. Multiphoton excitation of fluorescent proteins in this spectral region can lead to relevant application for bioimaging.  相似文献   

13.
To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.  相似文献   

14.
Intersystem crossing to the long-lived metastable triplet state is often a strong limitation on fluorescence brightness of single molecules, particularly for perylene in various matrices. In this paper, we report on a strong excitation-induced reverse intersystem crossing (rISC), a process where single perylene molecules in a dibenzothiophene matrix recover faster from the triplet state, turning into bright emitters at saturated excitation powers. With a detailed study of single-molecule fluorescence autocorrelations, we quantify the effect of rISC. The intrinsic lifetimes found for the two effective triplet states (8.5±0.4 ms and 64±12 ms) become significantly shorter, into the sub-millisecond range, as the excitation power increases and fluorescence brightness is ultimately enhanced at least fourfold. Our results are relevant for the understanding of triplet state manipulation of single-molecule quantum emitters and for markedly improving their brightness.  相似文献   

15.
To develop a structure-spectroscopic property relationship in platinum acetylides having poly(aromatic hydrocarbon) ligands, we synthesized a series of chromophores with systematic variation in the number of fused aromatic rings (nFAR) and ligand topology (polyacene (L), polyphenanthrene (Z), or compact(C)). We measured ground-state absorption, fluorescence, and phosphorescence spectra. We also performed nanosecond and femtosecond transient absorption experiments. To extend the range of compounds in the structure-property relationship, we did DFT calculations on an expanded series of chromophores. Both the DFT results and experiments show that the S(1) and T(1) state energies are a function of both nFAR and the ligand topology. In the L chromophores, the S(1) and T(1) state energies decrease linearly with nFAR. In contrast, the S(1) and T(1) state energies of the Z chromophores oscillate around a fixed value with increasing nFAR. The C chromophores have behavior intermediate between the L and Z chromophores. A parallel series of calculations on the ligands shows the same behavior. The S(1)-S(n) energy obtained from ultrafast time-resolved spectra has a linear variation in nFAR. The rate constant for nonradiative decay, k(nr), was calculated from the S(1) state lifetime and decreases with an increasing number of π electrons in the aromatic ring. The result is consistent with the spin-orbit coupling caused by the central platinum heavy atom decreasing with larger nFAR. The present work shows that the framework developed for the analysis of poly(aromatic hydrocarbon) properties is useful for the understanding of the corresponding platinum acetylide complexes.  相似文献   

16.
Two-photon-resonant hyper-Raman spectra are reported for three "push-pull" conjugated organic chromophores bearing -NO(2) acceptor groups, two dipolar and one octupolar. The excitation source is an unamplified picosecond mode-locked Ti:sapphire laser tunable from 720 to 950 nm. The linear resonance Raman spectra of the same molecules are measured using excitation from the laser second harmonic. Excitation on resonance with the lowest-lying band in the linear absorption spectrum yields nearly identical resonance Raman and resonance hyper-Raman spectra. However, excitation into a region that appears to contain more than one electronic transition gives rise to different intensity patterns in the linear and nonlinear spectra, indicating that different transitions contribute differently to the one-photon and two-photon oscillator strength. The promise of the hyper-Raman technique for examining electronic transitions that are both one- and two-photon allowed is discussed.  相似文献   

17.
We prepared conceptually novel, fully rigid, spiro compact electron donor (Rhodamine B, lactam form, RB)/acceptor (naphthalimide; NI) orthogonal dyad to attain the long-lived triplet charge-transfer (3CT) state, based on the electron spin control using spin-orbit charge transfer intersystem crossing (SOCT-ISC). Transient absorption (TA) spectra indicate the first charge separation (CS) takes place within 2.5 ps, subsequent SOCT-ISC takes 8 ns to produce the 3NI* state. Then the slow secondary CS (125 ns) gives the long-lived 3CT state (0.94 μs in deaerated n-hexane) with high energy level (ca. 2.12 eV). The cascade photophysical processes of the dyad upon photoexcitation are summarized as 1NI*→1CT→3NI*→3CT. With time-resolved electron paramagnetic resonance (TREPR) spectra, an EEEAAA electron-spin polarization pattern was observed for the naphthalimide-localized triplet state. Our spiro compact dyad structure and the electron spin-control approach is different to previous methods for which invoking transition-metal coordination or chromophores with intrinsic ISC ability is mandatory.  相似文献   

18.
Thionine (ThH+) molecules form monomeric ThH+@CB7 (1: 1) and dimeric 2ThH+@CB8 (2: 1) complexes with cucurbit[7,8]urils (CB7) and (CB8) in water. Unlike the case free ThH+ molecules, the absorption spectrum of the complexes is characterized by a hypsochromic shift of the maximum by 6 and 41 nm for ThH+@CB7 and 2ThH+@CB8, respectively. The ThH+@CB7 complexes exhibit fluorescence, unlike the nonfluorescing 2ThH+@CB8 complexes. The monomeric complexes undergo intersystem crossing to the triplet state with a lifetime of 14 μs. The dimeric complexes have a very low quantum yield of the triplet state. The triplet state of the dimeric complexes was populated by photosensitized excitation by triplet–triplet energy transfer. The lifetime of the triplet state is ≈50 μs.  相似文献   

19.
Five cyclobutanethiones with different chromophores at the 3-position were examined for triplet state behaviour in benzene using laser excitation into their low lying nπ*1 band systems. A weak transient absorption attributable to the triplet state is observed in all these cases. Results concerning triplet lifetimes, intersystem crossing yields (S1 → T1), self-quenching kinetics and kinetics of energy transfer to all-trans-1,6-diphenyl-1,3,5-hexatriene and oxygen and quenching by di-t-butyl nitroxide (DTBN) are presented. Intersystem crossing yields estimated with reference to p,p′-dimethoxythiobenzophenone are roughly unity in all five cases. Self-quenching rates are found to be less than diffusion limited and this is attributed to steric crowding at the α positions (dimethyl group). The rates of oxygen and DTBN quenching compare well with those reported for several other thiones in the literature. No transients other than the triplet were detected in the above cyclobutane-thiones.  相似文献   

20.
A porphyrin-perinaphthothioindigo conjugate having two-photon absorption cross-sections of approximately 2000 GM and approximately 700 GM for trans- and cis-isomers, respectively, was synthesized and exhibited clear photochromic behavior upon one-photon and two-photon excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号