首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rotating-bomb combustion calorimeter specifically designed for the study of sulfur-containing compounds [J. Chem. Thermodyn. 1999, 31, 635] has been used for the determination of the enthalpy of formation of thiane sulfone, 4, Delta(f)H(o) m(g) = -394.8 +/- 1.5 kJ x mol(-1). This value stands in stark contrast with the enthalpy of formation reported for thiane itself, Delta(f)H(o) m(g) = -63.5 +/- 1.0 kJ x mol(-1), and gives evidence of the increased electronegativity of the sulfur atom in the sulfonyl group, which leads to significantly stronger C-SO2 bonds. Given the known enthalpy of formation of atomic oxygen in the gas phase, Delta(f)H(o) m(O,g) = +249.18 kJ x mol(-1), and the reported bond dissociation energy for the S=O bond in alkyl sulfones, BDE(S=O) = +470.0 kJ x mol(-1), it was possible to estimate the enthalpy of formation of thiane sulfoxide, 5, a hygroscopic compound not easy to use in experimental calorimetric measurements, Delta(f)H(o) m(5) = -174.0 kJ x mol(-1). The experimental enthalpy of formation of both 4 and 5 were closely reproduced by theoretical calculations at the G2(MP2)+ level, Delta(f)H(o) m(4) = -395.0 kJ x mol(-1) and Delta(f)H(o) m(5) = -178.0 kJ x mol(-1). Finally, calculated G2(MP2)+ values for the bond dissociation energy of the S=O bond in cyclic sulfoxide 5 and sulfone 4 are +363.7 and +466.2 kJ x mol(-1), respectively.  相似文献   

2.
The values of the molar standard enthalpies of formation, Delta(f)H(o)(m)(C(76), cr) = (2705.6 +/- 37.7) kJ x mol(-1), Delta(f)H(o)(m)(C(78), cr) = (2766.5 +/- 36.7) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), cr) = (2826.6 +/- 42.6) kJ x mol(-1), were determined from the energies of combustion, measured by microcombustion calorimetry on a high-purity sample of the D(2) isomer of fullerene C(76), as well as on a mixture of the two most abundant constitutional isomers of C(78) (C(2nu)-C(78) and D(3)-C(78)) and C(84) (D(2)-C(84), and D(2d)-C(84). These values, combined with the published data on the enthalpies of sublimation of each cluster, lead to the gas-phase enthalpies of formation, Delta(f)H(o)(m)(C(76), g) = (2911.6 +/- 37.9) kJ x mol(-1); Delta(f)H(o)(m)(C(78), g) = (2979.3 +/- 37.2) kJ x mol(-1), and Delta(f)H(o)(m)(C(84), (g)) = (3051.6 +/- 43.0) kJ x mol(-1), results that were found to compare well with those reported from density functional theory calculations. Values of enthalpies of atomization, strain energies, and the average C-C bond energy were also derived for each fullerene. A decreasing trend in the gas-phase enthalpy of formation and strain energy per carbon atom as the size of the cluster increases is found. This is the first experimental evidence that these fullerenes become more stable as they become larger. The derived experimental average C-C bond energy E(C-C) = 461.04 kJ x mol(-1) for fullerenes is close to the average bond energy E(C-C) = 462.8 kJ x mol(-1) for polycyclic aromatic hydrocarbons (PAHs).  相似文献   

3.
The energetics of the thermal dimerization of acenaphthylene to give Z- or E-heptacyclene was investigated. The standard molar enthalpy of the formation of monoclinic Z- and E-heptacyclene isomers at 298.15 K was determined as Delta(f)H(m)o (E-C24H16, cr) = 269.3 +/- 5.6 kJ x mol(-1) and Delta(f)H(m)o (Z-C24H16, cr) = 317.7 +/- 5.6 kJ x mol(-1), respectively, by microcombustion calorimetry. The corresponding enthalpies of sublimation, Delta(sub)H(m)o (E-C24H16) = (149.0 +/- 3.1) kJ x mol(-1) and Delta(sub)H(m)o (Z-C24H16) = (128.5 +/- 2.3) kJ x mol(-1) were also obtained by Knudsen effusion and Calvet-drop microcalorimetry methods, leading to Delta(f)H(m)o (E-C24H16, g) = (418.3 +/- 6.4) kJ x mol(-1) and Delta(f)H(m)o (Z-C24H16, g) = (446.2 +/- 6.1) kJ x mol(-1), respectively. These results, in conjunction with the reported enthalpies of formation of solid and gaseous acenaphthylene, and the entropies of acenaphthylene and both hepatcyclene isomers obtained by the B3LYP/6-31G(d,p) method led to the conclusion that at 298.15 K the thermal dimerization of acenaphthylene is considerably exothermic and exergonic in the solid and gaseous states (although more favorable when the E isomer is the product), suggesting that the nonobservation of the reaction under these conditions is of kinetic nature. A full determination of the molecular and crystal structure of the E dimer by X-ray diffraction is reported for the first time. Finally, molecular dynamics computer simulations on acenaphthylene and the heptacyclene solids were carried out and the results discussed in light of the corresponding structural and Delta(sub)H(m)o data experimentally obtained.  相似文献   

4.
In this work, the aromaticity of pyracylene (2) was investigated from an energetic point of view. The standard enthalpy of hydrogenation of acenaphthylene (1) to acenaphthene (3) at 298.15 K was determined to be minus sign(114.5 +/- 4.2) kJ x mol(-1) in toluene solution and minus sign(107.9 +/- 4.2) kJ x mol(-1) in the gas phase, by combining results of combustion and reaction-solution calorimetry. A direct calorimetric measurement of the standard enthalpy of hydrogenation of pyracylene (2) to pyracene (4) in toluene at 298.15 K gave -(249.9 plus minus 4.6) kJ x mol(-1). The corresponding enthalpy of hydrogenation in the gas phase, computed from the Delta(f)H(o)m(cr) and DeltaH(o)m(sub) values obtained in this work for 2 and 4, was -(236.0 +/- 7.0) kJ x mol(-1). Molecular mechanics calculations (MM3) led to Delta(hyd)H(o)m(1,g) = -110.9 kJ x mol(-1) and Delta(hyd)H(o)m(2,g) = -249.3 kJ x mol(-1) at 298.15 K. Density functional theory calculations [B3LYP/6-311+G(3d,2p)//B3LYP/6-31G(d)] provided Delta(hyd)H(o)m(2,g) = -(244.6 +/- 8.9) kJ x mol(-1) at 298.15 K. The results are put in perspective with discussions concerning the "aromaticity" of pyracylene. It is concluded that, on energetic grounds, pyracylene is a borderline case in terms of aromaticity/antiaromaticity character.  相似文献   

5.
The energetics of the phenolic O-H bond in the three hydroxybenzoic acid isomers and of the intramolecular hydrogen O-H- - -O-C bond in 2-hydroxybenzoic acid, 2-OHBA, were investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of monoclinic 3- and 4-hydroxybenzoic acids, at 298.15 K, were determined as Delta(f)(3-OHBA, cr) = -593.9 +/- 2.0 kJ x mol(-1) and Delta(f)(4-OHBA, cr) = -597.2 +/- 1.4 kJ x mol(-1), by combustion calorimetry. Calvet drop-sublimation calorimetric measurements on monoclinic samples of 2-, 3-, and 4-OHBA, led to the following enthalpy of sublimation values at 298.15 K: Delta(sub)(2-OHBA) = 94.4 +/- 0.4 kJ x mol(-1), Delta(sub)(3-OHBA) = 118.3 +/- 1.1 kJ x mol(-1), and Delta(sub)(4-OHBA) = 117.0 +/- 0.5 kJ x mol(-1). From the obtained Delta(f)(cr) and Delta(sub) values and the previously reported enthalpy of formation of monoclinic 2-OHBA (-591.7 +/- 1.3 kJ x mol(-1)), it was possible to derive Delta(f)(2-OHBA, g) = -497.3 +/- 1.4 kJ x mol(-1), Delta(f)(3-OHBA, g) = -475.6 +/- 2.3 kJ x mol(-1), and Delta(f)(4-OHBA, cr) = -480.2 +/- 1.5 kJ x mol(-1). These values, together with the enthalpies of isodesmic and isogyric gas-phase reactions predicted by density functional theory (B3PW91/aug-cc-pVDZ, MPW1PW91/aug-cc-pVDZ, and MPW1PW91/aug-cc-pVTZ) and the CBS-QMPW1 methods, were used to derive the enthalpies of formation of the gaseous 2-, 3-, and 4-carboxyphenoxyl radicals as (2-HOOCC(6)H(4)O(*), g) = -322.5 +/- 3.0 kJ.mol(-1) Delta(f)(3-HOOCC(6)H(4)O(*), g) = -310.0 +/- 3.0 kJ x mol(-1), and Delta(f)(4-HOOCC(6)H(4)O(*), g) = -318.2 +/- 3.0 kJ x mol(-1). The O-H bond dissociation enthalpies in 2-OHBA, 3-OHBA, and 4-OHBA were 392.8 +/- 3.3, 383.6 +/- 3.8, and 380.0 +/- 3.4 kJ x mol(-1), respectively. Finally, by using the ortho-para method, it was found that the H- - -O intramolecular hydrogen bond in the 2-carboxyphenoxyl radical is 25.7 kJ x mol(-1), which is ca. 6-9 kJ x mol(-1) above the one estimated in its parent (2-OHBA), viz. 20.2 kJ x mol(-1) (theoretical) or 17.1 +/- 2.1 kJ x mol(-1) (experimental).  相似文献   

6.
We have investigated the thermochemistry and ion energetics of the oxybenzone (2-hydroxy-4-methoxy-benzophenone, C14H12O3, 1H) molecule. The following parameters have been determined for this species: gas-phase enthalpy for the of neutral molecule at 298.15K, (Delta(f)H0(m)(g) = -303.5 +/- 5.1 kJ x mol-1), the intrinsic (gas-phase) acidity (GA(1H) = 1402.1 +/- 8.4 kJ x mol-1), enthalpy of formation for the oxybenzone anion (Delta(f)H0(m)(1-,g) = -402.3 +/- 9.8 kJ x mol-1). We also have obtained the enthalpy of formation of, 4-hydroxy-4'-methoxybenzophenone (Delta(f)H0(m)(g) = -275.4 +/- 10 kJ x mol-1) and 3-methoxyphenol anion (Delta(f)H0(m)(C7H7O2-,g) = -317.7 +/- 8.7 kJ x mol-1). A reliable experimental estimation of enthalpy related to intramolecular hydrogen bonding in oxybenzone has also been obtained (30.1 +/- 6.3 kJ x mol-1) and compared with our theoretical calculations at the B3LYP/6-311++G** level of theory, by means of an isodesmic reaction scheme. In addition, heat capacities, temperature, and enthalpy of fusion have been determined for this molecule by differential scanning calorimetry.  相似文献   

7.
The enthalpies of combustion and sublimation of 1,3-dithiacyclohexane 1,1-dioxide (1,3-dithiane sulfone) were measured by a rotating-bomb combustion calorimeter and the Knudsen effusion technique, and the gas-phase enthalpy of formation was determined, Delta(f)H(m)*(g) = -326.3 +/- 2.0 kJ mol(-1). Standard ab initio molecular orbital calculations at the G2(MP2) level were performed, and a theoretical study on molecular and electronic structure of the compound has been carried out. Calculated Delta(f)H(m)*(g) values agree very well with the experimental one. These experimental and theoretical studies support the relevance of the repulsive electrostatic interaction between sulfur atoms in 1,3-dithiane sulfone, that apparently counterbalances any n(S) --> rho(C-SO2)* stabilizing hyperconjugative interaction.  相似文献   

8.
The standard molar enthalpies of formation of chloro-, bromo-, and iodoacetic acids in the crystalline state, at 298.15 K, were determined as deltafH(o)m(C2H3O2Cl, cr alpha)=-(509.74+/- 0.49) kJ x mol(-1), deltafH(o)m(C2H3O2Br, cr I)-(466.98 +/- 1.08) kJ x mol(-1), and deltafH(o)m (C2H3O2I, cr)=-(415.44 +/- 1.53) kJ x mol(-1), respectively, by rotating-bomb combustion calorimetry. Vapor pressure versus temperature measurements by the Knudsen effusion method led to deltasubH(o)m(C2H3O2Cl)=(82.19 +/- 0.92) kJ x mol(-1), deltasubH(o)m(C2H3O2Br)=(83.50 +/- 2.95) kJ x mol(-1), and deltasubH(o)m-(C2H3O2I) = (86.47 +/- 1.02) kJ x mol(-1), at 298.15 K. From the obtained deltafH(o)m(cr) and deltasubH(o)m values it was possible to derive deltafH(o)m(C2H3O2Cl, g)=-(427.55 +/- 1.04) kJ x mol(-1), deltafH(o)m (C2H3O2Br, g)=-(383.48 +/- 3.14) kJ x mol(-1), and deltafH(o)m(C2H3O2I, g)=-(328.97 +/- 1.84) kJ x mol(-1). These data, taken with a published value of the enthalpy of formation of acetic acid, and the enthalpy of formation of the carboxymethyl radical, deltafH(o)m(CH2COOH, g)=-(238 +/- 2) kJ x mol(-1), obtained from density functional theory calculations, led to DHo(H-CH2COOH)=(412.8 +/- 3.2) kJ x mol(-1), DHo(Cl-CH2COOH)=(310.9 +/- 2.2) kJ x mol(-1), DHo(Br-CH2COOH)=(257.4 +/- 3.7) kJ x mol(-1), and DHo(I-CH2COOH)=(197.8 +/- 2.7) kJ x mol(-1). A discussion of the C-X bonding energetics in XCH2COOH, CH3X, C2H5X, C2H3X, and C6H5X (X=H, Cl, Br, I) compounds is presented.  相似文献   

9.
The standard enthalpy of formation and the enthalpy of sublimation of crystalline 2-hydroxyphenazine-di-N-oxide, at T = 298.15 K, were determined from isoperibol static bomb combustion calorimetry and from Knudsen effusion experiments, as -76.7 +/- 4.2 kJ.mol(-1) and 197 +/- 5 kJ.mol(-1), respectively. The sum of these two quantities gives the standard enthalpy of formation in the gas-phase for this compound, delta(f)H(m)degrees(g) = 120 +/- 6 kJ.mol(-1). This value was combined with the gas-phase standard enthalpy of formation for 2-hydroxyphenazine retrieved from a group estimative method yielding the mean (N-O) bond dissociation enthalpy, in the gas-phase, for 2-hydroxyphenazine-di-N-oxide. The result obtained with this strategy is (DH(m)degrees (N - O)) = 263 +/- 4 kJ.mol(-1), which is in excellent agreement with the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computed value, 265 kJ.mol(-1).  相似文献   

10.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

11.
[reaction: see text] This study is a multinational, multidisciplinary contribution to the thermochemistry of dimethyl1,4-cubanedicarboxylate and the corresponding isomeric, cuneane derivative and provides both structural and thermochemical information regarding the rearrangement of dimethyl 1,4-cubanedicarboxylate to dimethyl 2,6-cuneanedicarboxylate. The enthalpies of formation in the condensed phase at T = 298.15 K of dimethyl 1,4-cubanedicarboxylate (dimethyl pentacyclo[4.2.0.0.(2,5)0.(3,8)0(4,7)]octane-1,4-dicarboxylate) and dimethyl 2,6-cuneanedicarboxylate (dimethyl pentacyclo[3.3.0.0.(2,4)0.(3,7)0(6,8)]octane-2,6-dicarboxylate) have been determined by combustion calorimetry, delta(f) H(o)m (cr)/kJ x mol(-1) = -232.62 +/- 5.84 and -413.02 +/- 5.16, respectively. The enthalpies of sublimation have been evaluated by combining vaporization enthalpies evaluated by correlation-gas chromatography and fusion enthalpies measured by differential scanning calorimetry and adjusted to T = 298.15 K, delta(cr) (g)Hm (298.15 K)/kJ x mol(-1) = 117.2 +/- 3.9 and 106.8 +/- 3.0, respectively. Combination of these two enthalpies resulted in delta(f) H(o)m (g., 298.15 K)/kJ x mol(-1) of -115.4 +/- 7.0 for dimethyl 1,4-cubanedicarboxylate and -306.2 +/- 6.0 for dimethyl 2,6-cuneanedicarboxylate. These measurements, accompanied by quantum chemical calculations, resulted in values of delta(f) Hm (g, 298.15 K) = 613.0 +/- 9.5 kJ x mol(-1) for cubane and 436.4 +/- 8.8 kJ x mol(-1) for cuneane. From these enthalpies of formation, strain enthalpies of 681.0 +/- 9.8 and 504.4 +/- 9.1 kJ x mol(-1) were calculated for cubane and cuneane by means of isodesmic reactions, respectively. Crystals of dimethyl 2,6-cuneanedicarboxylate are disordered; the substitution pattern and structure have been confirmed by determination of the X-ray crystal structure of the corresponding diacid.  相似文献   

12.
The enthalpies of combustion and vaporization of 3-buten-1-ol and 3-butyn-1-ol have been measured by static bomb combustion calorimetry and correlation gas chromatography techniques, respectively, and the gas-phase enthalpies of formation, Delta(f)H degrees (m)(g), have been determined, the values being -147.3 +/- 1.8 and 16.7 +/- 1.6 kJ mol(-1), for 3-buten-1-ol and 3-butyn-1-ol, respectively. High level calculations at the G2 and G3 levels have also been carried out. Relationships between the enthalpies of formation of 1-alkanols, 1-alkenols and 1-alkynols and with the corresponding hydrocarbons have been discussed. From the calculated contributions to Delta(f)H degrees (m)(g) for the substitutions of CH(3) by CH(2)OH, CH(3)CH(2) by CH(2)=CH and CH(3)CH(2) by CH triple bond C, we have estimated the Delta(f)H degrees (m)(g) values for 3-buten-1-ol and 3-butyn-1-ol, in excellent agreement with the experimental ones. Delta(f)H degrees (m)(g) values for 1-alkenols and 1-alkynols up to 10 carbon atoms have also been estimated.  相似文献   

13.
In atom-based thermochemistry (ABT), state functions are referenced to free atoms, as opposed to the thermochemical convention of referencing to elements in their standard state. The shift of the reference frame reveals previously unrecognized linear relationships between the standard atomization enthalpies Delta(at)H(o)(g) of gas-phase diatomic and triatomic molecules and Delta(at)H(o)(s) of the corresponding solids for large groups of materials. For 35 alkali and coinage-metal halides, as well as alkali metal hydrides, Delta(at)H(o)(s) = 1.1203 Delta(at)H(o)(g) + 167.0 kJ mol(-1) is found; the standard error is SE = 16.0 kJ mol(-1), and the correlation coefficient is R = 0.9946. The solid coinage-metal monohydrides, CuH(s), AgH(s), and AuH(s), are predicted to be unstable with respect to the formation from the metals and elemental hydrogen by an approximately constant standard enthalpy of formation, Delta(f)H(o)(s) approximately +80 +/- 20 kJ mol(-1). Solid AuF is predicted to be marginally stable, having Delta(f)H(o)(s) = -60 +/- 50 kJ mol(-1) and standard a Gibbs energy of formation Delta(f)G(o)(s) approximately -40 +/- 50 kJ mol (-1). Triatomic alkaline-earth dihalides MX2 obey a similar linear relationship. The combined data of altogether 51 materials obey the relationship Delta(at)H(o)(s) = 1.2593 Delta(at)H(o)(g) + 119.9 kJ mol(-1) with R = 0.9984 and SE = 18.5 kJ mol(-1). The atomization enthalpies per atom of 25 data pairs of diatoms and solids in the groups 14-14, 13-15, and 2-16 are related as Delta(at)H(o)(s) = 2.1015 Delta(at)H(o)(g) + 231.9 kJ mol(-1) with R = 0.9949 and SE = 24.0 kJ mol(-1). Predictions are made for the GeC, GaSb, Hf2, TlN, BeS, MgSe, and MgTe molecules and for the solids SiPb, GePb, SnPb, and the thallium pnictides. Exceptions to the rule, such as SrO and BaO, are rationalized. Standard enthalpies of sublimation, Delta(subl)H(o) = Delta(at)H(o)(s) - Delta(at)H(o)(g), are calculated as a linear function of Delta(at)H(o)(g) profiting from the above linear relationships, and predictions for the Delta(subl)H(o) of the thallium pnictides are given. The validity of the new empirical relationships is limited to substances where at least one of the constituent elements is solid in its standard state. Reasons for the late discovery of such relationships are given, and a meaningful ABT is recommended by using Delta(at)H(o) as an important ordering and reference state function.  相似文献   

14.
The enthalpies of formation of pure liquid and gas-phase (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione are examined in the light of some more recent NMR studies on the enthalpy differences between gas-phase enthalpies of the two tautomers. Correlation gas chromatography experiments are used to evaluate the vaporization enthalpies of the pure tautomers. Values of (51.2 +/- 2.2) and (50.8 +/- 0.6) kJ.mol(-1) are measured for pure 2,4-pentanedione and (Z)-4-hydroxy-3-penten-2-one, respectively. The value of (50.8 +/- 0.6) kJ.mol(-1) can be contrasted to a value of (43.2 +/- 0.2) kJ.mol(-1) calculated for pure (Z)-4-hydroxy-3-penten-2-one when the vaporization enthalpy is measured in a mixture of tautomers. The difference is attributed to an endothermic enthalpy of mixing that destabilizes the mixture relative to the pure components. Calculation of new enthalpies of formation for (Z)-4-hydroxy-3-penten-2-one and 2,4-pentanedione in both the gas, Delta(f)H degrees (m)(g) = (-378.2 +/- 1.2) and (-358.9 +/- 2.5) kJ.mol(-1), respectively, and liquid phases, Delta(f)H degrees (m)(l) = (-429.0 +/- 1.0) and (-410.1 +/- 1.2) kJ.mol(-1), respectively, results in enthalpy differences between the two tautomers both in the liquid and gas phases that are identical within experimental error, and in excellent agreement with recent gas-phase NMR studies.  相似文献   

15.
The cis/trans conformational equilibrium of N-methyl formamide (NMF) and the sterically hindered tert-butylformamide (TBF) was investigated by the use of variable temperature gradient 1H NMR in aqueous solution and in the low dielectric constant and solvation ability solvent CDCl3 and various levels of first principles calculations. The trans isomer of NMF in aqueous solution is enthalpically favored relative to the cis (deltaH(o) = -5.79 +/- 0.18 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = -0.23 +/- 0.17 kJ mol(-1)) playing a minor role. The experimental value of the enthalpy difference strongly decreases (deltaH(o) = -1.72 +/- 0.06 kJ mol(-1)), and the contribution of entropy at 298 K (298 x deltaS(o) = -1.87 +/- 0.06 kJ mol(-1)) increases in the case of the sterically hindered tert-butylformamide. The trans isomer of NMF in CDCl3 solution is enthalpically favored relative to the cis (deltaH(o) = -3.71 +/- 0.17 kJ mol(-1)) with entropy differences at 298 K (298 x deltaS(o) = 1.02 +/- 0.19 kJ mol(-1)) playing a minor role. In the sterically hindered tert-butylformamide, the trans isomer is enthalpically disfavored (deltaH(o) = 1.60 +/- 0.09 kJ mol(-1)) but is entropically favored (298 x deltaS(o) = 1.71 +/- 0.10 kJ mol(-1)). The results are compared with literature data of model peptides. It is concluded that, in amide bonds at 298 K and in the absence of strongly stabilizing sequence-specific inter-residue interactions involving side chains, the free energy difference of the cis/trans isomers and both the enthalpy and entropy contributions are strongly dependent on the N-alkyl substitution and the solvent. The significant decreasing enthalpic benefit of the trans isomer in CDCl3 compared to that in H2O, in the case of NMF and TBF, is partially offset by an adverse entropy contribution. This is in agreement with the general phenomenon of enthalpy versus entropy compensation. B3LY/6-311++G** and MP2/6-311++G** quantum chemical calculations confirm the stability orders of isomers and the deltaG decrease in going from water to CHCl3 as solvent. However, the absolute calculated values, especially for TBF, deviate significantly from the experimental values. Consideration of the solvent effects via the PCM approach on NMF x H2O and TBF x H2O supermolecules improves the agreement with the experimental results for TBF isomers, but not for NMF.  相似文献   

16.
The standard molar enthalpy of sublimation of monoclinic cyclopentadienyltricarbonylmanganese, Mn(eta (5)-C 5H 5)(CO) 3, at 298.15 K, was determined as Delta sub H m (o)[Mn(eta (5)-C 5H 5)(CO) 3] = 75.97 +/- 0.37 kJ x mol (-1) from Knudsen effusion and Calvet-drop microcalorimetry measurements, thus considerably improving the very large inaccuracy (>10 kJ x mol (-1)) of the published data. The obtained value was used to assess the extension of the OPLS-based all-atom force field we previously developed for iron metallocenes to manganese organometallic compounds. The modified force field was able to reproduce the volumetric properties (density and unit-cell volume) of crystalline Mn(eta (5)-C 5H 5)(CO) 3 with a deviation of 0.6% and the experimentally determined enthalpy of sublimation with an accuracy of 1 kJ x mol (-1). The interaction (epsilon) and atomic-diameter (sigma) parameters of the Lennard-Jones (12-6) potential function used to calculate dispersion contributions within the framework of the force field were found to be transferable from iron to manganese.  相似文献   

17.
The experimental and theoretical thermochemistry of the gaseous neutral and ionic iron oxides and hydroxides FeO, FeOH, FeO(2), OFeOH, and Fe(OH)(2) and of the related cationic water complexes Fe(H(2)O)(+), (H(2)O)FeOH(+), and Fe(H(2)O)(2)(+) is analyzed comprehensively. A combination of data for the neutral species with those of the gaseous ions in conjunction with some additional measurements provides a refined and internally consistent compilation of thermochemical data for the neutral and ionic species. In terms of heats of formation at 0 K, the best estimates for the gaseous, mononuclear FeO(m)H(n)(-/0/+/2+) species with m = 1, 2 and n = 0-4 are Delta(f)H(FeO(-)) = (108 +/- 6) kJ/mol, Delta(f)H(FeO) = (252 +/- 6) kJ/mol, Delta(f)H(FeO(+)) = (1088 +/- 6) kJ/mol, Delta(f)H(FeOH) = (129 +/- 15) kJ/mol, Delta(f)H(FeOH(+)) = (870 +/- 15) kJ/mol, Delta(f)H(FeO(2)(-)) = (-161 +/- 13) kJ/mol, Delta(f)H(FeO(2)) = (67 +/- 12) kJ/mol, Delta(f)H(FeO(2)(+)) = (1062 +/- 25) kJ/mol, Delta(f)H(OFeOH) = (-84 +/- 17) kJ/mol, Delta(f)H(OFeOH(+)) = (852 +/- 23) kJ/mol, Delta(f)H(Fe(OH)(2)(-)) = -431 kJ/mol, Delta(f)H(Fe(OH)(2)) = (-322 +/- 2) kJ/mol, and Delta(f)H(Fe(OH)(2)(+)) = (561 +/- 10) kJ/mol for the iron oxides and hydroxides as well as Delta(f)H(Fe(H(2)O)(+)) = (809 +/- 5) kJ/mol, Delta(f)H((H(2)O)FeOH(+)) = 405 kJ/mol, and Delta(f)H(Fe(H(2)O)(2)(+)) = (406 +/- 6) kJ/mol for the cationic water complexes. In addition, charge-stripping data for several of several-iron-containing cations are re-evaluated due to changes in the calibration scheme which lead to Delta(f)H(FeO(2+)) = (2795 +/- 28) kJ/mol, Delta(f)H(FeOH(2+)) = (2447 +/- 30) kJ/mol, Delta(f)H(Fe(H(2)O)(2+)) = (2129 +/- 29) kJ/mol, Delta(f)H((H(2)O)FeOH(2+)) = 1864 kJ/mol, and Delta(f)H(Fe(H(2)O)(2)(2+)) = (1570 +/- 29) kJ/mol, respectively. The present compilation thus provides an almost complete picture of the redox chemistry of mononuclear iron oxides and hydroxides in the gas phase, which serves as a foundation for further experimental studies and may be used as a benchmark database for theoretical studies.  相似文献   

18.
Density functional and ab initio calculations at CBS-QB3 levels of theory were employed with a series of isodesmic reactions to determine the thermochemistry of the 2-oxopropyl or acetonyl radical (CH(3)COC*H2). In turn, this was used to determine formation enthalpies of 2-oxoethyl or formylmethyl (C*H(2)CHO), 2-oxobutyl (C*H(2)COC(2)H(5)), 1-methyl-2-oxopropyl or methylacetonyl (C*H(CH(3))COCH(3)), 1-methyl-2-oxobutyl (C*H(CH(3))COC(2)H(5)), and 3-oxopentyl (C*H(2)CH2COC(2)H(5)). Our computed standard enthalpy of formation of -34.9 +/- 1.9 kJ mol-1 and a resonance stabilization energy of approximately 22 kJ mol(-1) for acetonyl are in good agreement with recent re-determinations, which have indicated a substantial lowering in the long-established value for DeltaH(f)o (298.15 K). A bond dissociation energy of 401 kJ mol(-1) is suggested for the C-H bond in acetone with consistent values for the others. The calculations support the enthalpy of formation of acetaldehyde obtained from combustion experiments of -166.1 kJ mol(-1) rather than the figure of -170.7 kJ mol(-1) extracted from enthalpies of reduction and, in addition, serve to reduce the uncertainty in DeltaH(f)o the 2-oxoethyl radical to +13 +/- 2 kJ mol(-1).  相似文献   

19.
The standard enthalpy of formation of the 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide compound in the gas-phase was derived from the enthalpies of combustion of the crystalline solid measured by static bomb combustion calorimetry and its enthalpy of sublimation determined by Knudsen mass-loss effusion at T= 298.15 K. This value is (383.8 +/- 5.4) kJ mol(-1) and was subsequently combined with the experimental gas-phase enthalpy of formation of atomic oxygen and with the computed gas-phase enthalpy of formation of 2-amino-3-quinoxalinecarbonitrile, (382.0 +/- 6.3) kJ mol(-1), in order to estimate the mean (N-O) bond dissociation enthalpy in the gas-phase of 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide. The result obtained is (248.3 +/- 8.3) kJ mol(-1), which is in excellent agreement with the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computed value.  相似文献   

20.
Accurate G3(MP2) calculations of the enthalpies of formation (Delta(f)H298) of organic molecules permit replication and extension of calculations that were formerly dependent on experimental thermochemical results. A case in point is Kistiakowski's classical calculation of the total stabilization enthalpy of benzene relative to that of cyclohexene, called for many years the "resonance energy". This paper investigates extension of the classical calculation to substituted benzenes. Slight modification of the usual procedure for Delta(f)H298 determination permits exclusion of all empirical information, leaving a purely ab initio result. Stabilization enthalpies relative to the corresponding 4-substituted cyclohexenes are presented for benzene, toluene, aniline, phenol, phenylacetylene, styrene, ethylbenzene, and phenylhydrazine. In the process of calculating these stabilization enthalpies, we have also obtained 42 values of Delta(f)H298 for monosubstituted benzenes, cyclohexenes, and cyclohexanes, 24 of which are not in the standard reference literature. For the remaining 18 G3(MP2) results, the unsigned mean difference between calculated Delta(f)H298 values and experimental results is +/-0.91 kcal x mol(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号