首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first-principles method based on density-functional theory is used to investigate the geometries of the lowest-lying isomers of AunAg2 (n = 1 - 4) clusters. Several low-lying isomers are determined, and many of them in electronic configurations with a high spin multiplicity. The stability trend of Ag-doped Aun dusters is compared to that of pure Aun clusters. Our results indicate that the inclusion of two Ag atoms in the clusters lowers the cluster stability, indicating higher stability as the structures grow in size. The bigger energy difference between the Aun and AunAg2 curves as the structures grows in size. This information will be useful to understanding the enhanced catalytic activity and selectivity gained by using silver-doped gold catalyst.  相似文献   

2.
《中国物理快报》2002,19(8):1144-1147
We perform a molecular dynamics simulation of microstructure transitions in a large-scale system consisting of 400000 atoms of liquid metal Al by the Clare supercomputer.A cluster-type index method is proposed to describe the structures of various short-range-order clusters in the liquid system.It is demonstrated that the icosahedron cluster (12 0 12 0) plays the most important role in the microstructure transition and that some larger clusters (containing more than 130 atoms) are formed in the system during the rapid cooling processes.It is obvious that the larger clusters are formed by means of combining some middle clusters,and that the middle clusters are formed with several smaller clusters.However,the larger clustens are not formed to be the multi-shell configuration as shown in the mass spectrum analysis of the cluster configurations of Al obtained by gaseous deposition,ionic spray methods and so on.This result can be used to explain the essential distinction between the cluster configurations of Al formed in two different ways.  相似文献   

3.
The geometries, stabilities, and electronic properties of FSin (n=1~12) clusters are systematically investigated by using first-principles calculations based on the hybrid density-functional theory at the B3LYP/6-311G level. The geometries are found to undergo a structural change from two-dimensional to three-dimensional structure when the cluster size n equals 3. On the basis of the obtained lowest-energy geometries, the size dependencies of cluster properties, such as averaged binding energy, fragmentation energy, second-order energy difference, HOMO–LUMO (highest occupied molecular orbital–lowest unoccupied molecular orbital) gap and chemical hardness, are discussed. In addition, natural population analysis indicates that the F atom in the most stable FSin cluster is recorded as being negative and the charges always transfer from Si atoms to the F atom in the FSin clusters.  相似文献   

4.
The static dipole polarizabilities of scandium clusters with up to 15 atoms are determined by using the numerically finite field method in the framework of density functional theory. The electronic effects on the polarizabilities are investigated for the scandium clusters. We examine a large highest occupied molecular orbital --- the lowest occupied molecular orbital (HOMO--LUMO) gap of a scandium cluster usually corresponds to a large dipole moment. The static polarizability per atom decreases slowly and exhibits local minimum with increasing cluster size. The polarizability anisotropy and the ratio of mean static polarizability to the HOMO--LUMO gap can also reflect the cluster stability. The polarizability of the scandium cluster is partially related to the HOMO--LUMO gap and is also dependent on geometrical characteristics. A strong correlation between the polarizability and ionization energy is observed.  相似文献   

5.
The first-principles method based on density-functional theory is used to investigate the geometries of the lowest-lying isomers of Aun Ag2 (n = 1 ~ 4) clusters. Several low-lying isomers are determined, and many of them in electronic configurations with a high spin multiplicity. The stability trend of Ag-doped Aun clusters is compared to that of pure Aun clusters. Our results indicate that the inclusion of two Ag atoms in the clusters lowers the cluster stability, indicating higher stability as the structures grow in size. The bigger energy difference between the Aun and Aun Ag2 curves as the structures grows in size. This information will be useful to understanding the enhanced catalytic activity and selectivity gained by using silver-doped gold catalyst.  相似文献   

6.
M Esen  A T Tü  zemen  M Ozdemir 《中国物理 B》2016,25(1):13601-013601
The mobility of clusters on a semiconductor surface for various values of cluster size is studied as a function of temperature by kinetic Monte Carlo method. The cluster resides on the surface of a square grid. Kinetic processes such as the diffusion of single particles on the surface, their attachment and detachment to/from clusters, diffusion of particles along cluster edges are considered. The clusters considered in this study consist of 150–6000 atoms per cluster on average.A statistical probability of motion to each direction is assigned to each particle where a particle with four nearest neighbors is assumed to be immobile. The mobility of a cluster is found from the root mean square displacement of the center of mass of the cluster as a function of time. It is found that the diffusion coefficient of clusters goes as D = A(T)Nαwhere N is the average number of particles in the cluster, A(T) is a temperature-dependent constant and α is a parameter with a value of about-0.64 α -0.75. The value of α is found to be independent of cluster sizes and temperature values(170–220 K)considered in this study. As the diffusion along the perimeter of the cluster becomes prohibitive, the exponent approaches a value of-0.5. The diffusion coefficient is found to change by one order of magnitude as a function of cluster size.  相似文献   

7.
A systematic study on the structures and electronic properties of copper clusters has been performed using the density functional theory. In the calculation, there are many isomers near the ground state for small copper clusters. Our results show that the three-dimensional isomers of copper clusters start from Cu7 cluster and then show a tendency to form more compact structures. The results of the formation energy and the second derivative of binding energy with duster size show that besides N = 8, N =11 is also a magic number. Furthermore, it is the first time to find that the ground state of 11-atom clusters is a biplanar structure as same as the 13-atom cluster. The clear odd-even alternation as cluster size for the formation energy indicates the stability of electronic close shell existed in the range studied.  相似文献   

8.
Under classical particle dynamics, the interaction process between intense femtosecond laser pulses and icosahedral noble-gas atomic clusters was studied. Our calculated results show that ionization proceeds mainly through tunnel ionization in the combined field from ions, electrons and laser, rather than the electron-impact ionization. With increasing cluster size, the average and maximum kinetic energy of the product ion increases. According to our calculation, the expansion process of the clusters after laser irradiation is dominated by Coulomb explosion and the expansion scale increases with increasing cluster size. The dependence of average kinetic energy and average charge state of the product ions on laser wavelength is also presented and discussed. The dependence of average kinetic energy on the number of atoms inside the cluster was studied and compared with the experimental data. Our results agree with the experimental results reasonably well.  相似文献   

9.
Divalent metal clusters have received great attention due to the interesting size-induced nonmetal-to-metal transition and fascinating properties dependent on cluster size,shape,and doping.In this work,the combination of the CALYPSO code and density functional theory(DFT)optimization is employed to explore the structural properties of neutral and anionic Mgn+1 and SrMgn(n=2-12)clusters.The results exhibit that as the atomic number of Mg increases,Sr atoms are more likely to replace Mg atoms located in the skeleton convex cap.By analyzing the binding energy,second-order energy difference and the charge transfer,it can be found the SrMg9 cluster with tower framework presents outstanding stability in a studied size range.Further,bonding characteristic analysis reveals that the stability of SrMg9 can be improved due to the strong s-p interaction among the atomic orbitals of Sr and Mg atoms.  相似文献   

10.
Using Bethe model, the dynamics of the ionization and Coulomb explosion of hydrogen clusters (0.5-5 nm) in high-intensity (1015 -1017 W/cm2) femtosecond laser pulses have been studied theoretically, and the dependence of energy of protons emitted from exploding clusters on cluster size and laser intensity has been investigated. It is found that the maximum proton energy increases exponentially with the cluster size, and the exponent is mainly determined by the laser intensity. For a given cluster size, the maximum proton energy increases with increasing laser intensity and gets saturation gradually. The calculation results are in agreement with the recent experimental observation.  相似文献   

11.
The interaction between intense femtosecond laser pulses and hydrogen atomic clusters is studied by a simplified Coulomb explosion model. The dependences of average proton kinetic energy on cluster size, pulse duration, laser intensity and wavelength are studied respectively. The calculated results indicate that the irradiation of a femtosecond laser of longer wavelength on hydrogen atomic clusters may be a simple, economical way to produce highly kinetic hydrogen ions. The phenomenon suggests that the irradiation of femtosecond laser of longer wavelength on deuterium atomic clusters may be easier than that of shorter wavelength to drive nuclear fusion reactions. The product of the laser intensity and the squared laser wavelength needed to make proton energy saturated as a function of the squared cluster radius is also investigated. The proton energy distribution calculated is also shown and compared with the experimental data. Our results are in agreement with the experimental results fairly well.  相似文献   

12.
A comprehensive simulation model -- deposition, diffusion, rotation, reaction and aggregation model is presented to simulate the formation processes of ramified clusters on liquid surfaces, where clusters can disuse and rotate easily. The mobility (including diffusion and rotation) of clusters is related to its mass, which is given by Dm = Dos^-γD and θm = θos^-γθ, respectively. The influence of the reaction probability on the kinetics and structure formation is included in the simulation model. We concentrate on revealing dynamic scaling during ramified cluster formation. For this purpose, the time evolution of the cluster density and the weight-average cluster size as well as the cluster-size distribution scaling function at different time are determined for various conditions. The dependence of the cluster density on the deposition flux and time-dependence of fractal dimension are also investigated. The obtained results are helpful in understanding the formation of clusters or thin film growth on liquid surfaces.  相似文献   

13.
陈明君  梁迎春  袁屹杰  李旦 《中国物理 B》2008,17(11):4260-4267
The Brenner-LJ potential is adopted to describe the interaction between C36 clusters and diamond surface, and the deposition mechanism of multi-C36 clusters on the diamond surface is also studied by using the method of molecular dynamics simulation. The simulation results show that the competition effects of two interactions, i.e. the interaction between cluster and cluster and the interaction between cluster and crystal plane, are studied, and then the influence of these competition effects on C36 cluster deposition is analysed. The finding is that when an incident energy is appropriately chosen, C36 clusters can be chemically adsorbed and deposited steadily on the diamond surface in the form of single-layer, and in the deposition process the multi-C36 clusters present a phenomenon of energy transmission. The experimental result shows that at a temperature of 300K, in order to deposit C36 clusters into a steady nanostructured single-layered film, the optimal incident energy is between 10 and 18 eV, if the incident energy is larger than 18 eV, the C36 clusters will be deposited into an island nano-structured film.  相似文献   

14.
A comprehensive simulation model -deposition,diffusion, rotation, reaction and aggregation model is presented to simulate the formation processes of ramified clusters on liquid surfaces, where clusters can diffuse and rotate easily. The mobility (including diffusion and rotation) of clusters is related to its mass, which is given by Dm = Dos-γD and θm =′θos-γθ, respectively. The influence of the reaction probability on the kinetics and structure formation is included in the simulation model. We concentrate on revealing dynamic scaling during ramified cluster formation. For this purpose, the time evolution of the cluster density and the weight-average cluster size as well as the cluster-size distribution scaling function at different time are determined for various conditions. The dependence of the cluster density on the deposition flux and time-dependence of fractal dimension are also investigated. The obtained results are helpful in understanding the formation of clusters or thin film growth on liquid surfaces.  相似文献   

15.
A deuterium cluster jet produced in the supersonic expansion into vacuum of deuterium gas at liquid nitrogen temperature and moderate backing pressures are studied by Rayleigh scattering techniques. The experimental results show that deuterium clusters can be created at moderate gas backing pressures ranging from 8 to 23 bar, and a maximum average cluster size of 350 atoms per cluster is estimated. The temporal evolution of the cluster jet generated at the backing pressure of 20 bar demonstrates a two-plateau structure. The possible mechanism responsible for this structure is discussed. The former plateau with higher average atom and cluster densities is more suitable for the general laser-cluster interaction experiments.  相似文献   

16.
卢章辉  曹觉先 《中国物理 B》2008,17(9):3336-3342
Based on the density-functional theory, this paper studies the geometric and magnetic properties of TinO (n=1-9) clusters. The resulting geometries show that the oxygen atom remains on the surface of clusters and does not change the geometry of Tin significantly. The binding energy, second-order energy differences with the size of clusters show that Ti7O cluster is endowed with special stability. The stability of TinO clusters is validated by the recent time-of-flight mass spectra. The total magnetic moments for TinO clusters with n=1-4, 8-9 are constant with 2 and drop to zero at n=5-7. The local magnetic moment and charge partition of each atom, and the density of states are discussed. The magnetic moment of the TinO is clearly dominated by the localized 3d electrons of Ti atoms while the oxygen atom contributes a very small amount of spin in TinO clusters.  相似文献   

17.
18.
A deuterium cluster jet produced in the supersonic expansion into vacuum of deuterium gas at liquid nitrogen temperature and moderate backing pressures are studied by Rayleigh scattering techniques. The experimental results show that deuterium clusters can be created at moderate gas backing pressures ranging from 8 to 23 bar, and a maximum average cluster size of 350 atoms per cluster is estimated. The temporal evolution of the cluster jet generated at the backing pressure of 20 bar demonstrates a two-plateau structure. The possible mechanism responsible for this structure is discussed. The former plateau with higher average atom and cluster densities is more suitable for the general laser-cluster interaction experiments.  相似文献   

19.
The structure and binding energy of copper clusters of the size range 70 to 150 were studied by using the embeddedatom method. The stability of the structure of the clusters was studied by calculating the average binding energy per atom, first difference energy and second difference energy of copper cluster. Most of the copper clusters of the size n=70-150 adopt an icosahedral structure. The results show that the trends are in agreement with theoretic prediction for copper clusters. The most stable structures for copper clusters are found at n=77, 90, 95, 131, 139.  相似文献   

20.
This paper investigates the structures and stabilities of neutral GaTAs7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of GaTAs7 cluster are found. It confirms that the ground state structure of neutral GaTAs7 cluster is a pentagonal prism with four face atoms like a basket structure, as reported by previous works. The ground state structures of positive Ga7As7 cluster ions are different from that of the neutral cluster. These investigations suggest that Ga atoms occupy the capping positions more easily than As atoms. Mulliken population analyses also show that Ga atoms can lose or obtain charge more easily than As atoms. It finds that the neutral GaTAs7 cluster can become more stable by gaining one or two additional electrons but further more electrons would cause the decrease of binding energy. The ionisation energy increases with the increase of the number of the removed electrons. These calculated results indicate that the net magnetic moment of the neutral GaTAs7 cluster is zero because all electrons axe paired together in their respective moleculax orbits. But for the ionic GaTAs7 cluster with odd number of electrons, the net magnetic moment is 1.0 μB due to an unpaired electron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号