首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here we examine the photooxidation of two kinetically fast electron hole traps, N4-cyclopropylcytosine (CPC) and N2-cyclopropylamine-guanosine (CPG), incorporated in DNA duplexes of various sequence using different photooxidants. DNA oxidation studies are carried out either with noncovalently bound [Ru(phen)(dppz)(bpy')]3+ (dppz = dipyridophenazine) and [Rh(phi)2(bpy)]3+ (phi = phenanthrenequinone diimine) or with anthraquinone tethered to DNA. Because the cyclopropylamine-substituted bases decompose rapidly upon oxidation, their efficiency of decomposition provides a measure of relative hole localization. Consistent with a higher oxidation potential for CPC versus CPG in DNA, CPC decomposes with photooxidation by [Rh(phi)2(bpy)]3+, while CPG undergoes ring-opening both with photoexcited [Rh(phi)2(bpy)]3+ and with [Ru(phen)(dppz)(bpy')]3+. Anthraquinone-modified DNA assemblies of identical base composition but different base sequence are also probed. Single and double base substitutions within adenine tracts modulate CPC decomposition. In fact, the entire sequence within the DNA assembly is seen to govern CPC oxidation, not simply the bases intervening between CPC and the tethered photooxidant. These data are reconciled in the context of a mechanistic model of conformationally gated charge transport through delocalized DNA domains. Photooxidations of anthraquinone-modified DNA assemblies containing both CPC and CPG, but with varied distances separating the modified bases, point to a domain size of at least three bases. Our model for DNA charge transport is distinguished from polaron models. In our model, delocalized domains within the base pair stack form transiently based upon sequence-dependent DNA structure and dynamics. Given these results, DNA charge transport is indeed remarkably sensitive to DNA sequence and structure.  相似文献   

2.
BACKGROUND: Multiple-stranded DNA assemblies, encoded by sequence, have been constructed in an effort to self-assemble nanodevices of defined molecular architecture. Double-helical DNA has been probed also as a molecular medium for charge transport. Conductivity studies suggest that DNA displays semiconductor properties, whereas biochemical studies have shown that oxidative damage to B-DNA at the 5'-G of a 5'-GG-3' doublet can occur by charge transport through DNA up to 20 nm from a photo-excited metallointercalator. The possible application of DNA assemblies, in particular double crossover (DX) molecules, in electrical nanodevices prompted the design of a DNA DX assembly with oxidatively sensitive guanine moieties and a tethered rhodium photo-oxidant strategically placed to probe charge transport. RESULTS: DX assemblies support long-range charge transport selectively down the base stack bearing the intercalated photo-oxidant. Despite tight packing, no electron transfer (ET) crossover to the adjacent base stack is observed. Moreover, the base stack of a DX assembly is well-coupled and less susceptible than duplex DNA to stacking perturbations. Introducing a double mismatch along the path for charge transport entirely disrupts long-range ET in duplex DNA, but only marginally decreases it in the analogous stack within DX molecules. CONCLUSIONS: The path for charge transport in a DX DNA assembly is determined directly by base stacking. As a result, the two closely packed stacks within this assembly are electronically insulated from one another. Therefore, DX DNA assemblies may serve as robust, insulated conduits for charge transport in nanoscale devices.  相似文献   

3.
Photoexcited 2-aminopurine (Ap*) is extensively exploited as a fluorescent base analogue in the study of DNA structure and dynamics. Quenching of Ap* in DNA is often attributed to stacking interactions between Ap* and DNA bases, despite compelling evidence indicating that charge transfer (CT) between Ap* and DNA bases contributes to quenching. Here we present direct chemical evidence that Ap* undergoes CT with guanine residues in duplex DNA, generating oxidative damage at a distance. Irradiation of Ap in DNA containing the modified guanine, cyclopropylguanosine (CPG), initiates hole transfer from Ap* followed by rapid ring opening of the CPG radical cation. Ring opening accelerates hole trapping to a much shorter time regime than for guanine radicals in DNA; consequently, trapping effectively competes with back electron transfer (BET) leading to permanent CT chemistry. Significantly, BET remains competitive, even with this much faster trapping reaction, consistent with measured kinetics of DNA-mediated CT. The distance dependence of BET is sharper than that of forward CT, leading to an inverted dependence of product yield on distance; at short distances product yield is inhibited by BET, while at longer distances trapping dominates, leading to permanent products. The distance dependence of product yield is distinct from forward CT, or charge injection. As with photoinduced charge transfer in other chemical and biological systems, rapid kinetics for charge injection into DNA need not be associated with a high yield of DNA damage products.  相似文献   

4.
INTRODUCTION: Oxidative damage to DNA in vivo can lead to mutations and cancer. DNA damage and repair studies have not yet revealed whether permanent oxidative lesions are generated by charges migrating over long distances. Both photoexcited *Rh(III) and ground-state Ru(III) intercalators were previously shown to oxidize guanine bases from a remote site in oligonucleotide duplexes by DNA-mediated electron transfer. Here we examine much longer charge-transport distances and explore the sensitivity of the reaction to intervening sequences. RESULTS: Oxidative damage was examined in a series of DNA duplexes containing a pendant intercalating photooxidant. These studies revealed a shallow dependence on distance and no dependence on the phasing orientation of the oxidant relative to the site of damage, 5'-GG-3'. The intervening DNA sequence has a significant effect on the yield of guanine oxidation, however. Oxidation through multiple 5'-TA-3' steps is substantially diminished compared to through other base steps. We observed intraduplex guanine oxidation by tethered *Rh(III) and Ru(III) over a distance of 200 A. The distribution of oxidized guanine varied as a function of temperature between 5 and 35 degrees C, with an increase in the proportion of long-range damage (> 100 A) occurring at higher temperatures. CONCLUSIONS: Guanines are oxidized as a result of DNA-mediated charge transport over significant distances (e.g. 200 A). Although long-range charge transfer is dependent on distance, it appears to be modulated by intervening sequence and sequence-dependent dynamics. These discoveries hold important implications with respect to DNA damage in vivo.  相似文献   

5.
6.
In principle, DNA-mediated charge transfer processes can be categorized as either oxidative hole transfer or reductive electron transfer. In research on DNA damage, major efforts have focused on the investigation of oxidative hole transfer or transport, resulting in insights on the mechanisms. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology. Yet the mechanistic details of this type of charge transfer chemistry were unclear. In the last two years this mechanism has been addressed in gamma-pulse radiolysis studies with randomly DNA-bound electron acceptors or traps. The major disadvantage of this experimental setup is that the electron injection and trapping is not site-selective. More recently, new photochemical assays for the chemical and spectroscopic investigation of reductive electron transfer and electron migration in DNA have been published which give new insights into these processes. Based on these results, an electron-hopping mechanism is proposed which involves pyrimidine radical anions as intermediate electron carriers.  相似文献   

7.
A novel tris heteroleptic dipyridophenazine complex of ruthenium(II), [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, containing a covalently tethered ruthenium pentammine quencher coordinated through a bridging histidine has been synthesized and characterized spectroscopically and biochemically in a DNA environment and in organic solvent. Steady-state and time-resolved luminescence measurements indicate that the tethered Ru complex is quenched relative to the parent complexes [Ru(phen)(dppz)(bpy')]2+ and [Ru(phen)(dppz)(bpy'-his)]2+ in DNA and acetonitrile, consistent with intramolecular photoinduced electron transfer. Intercalated into guanine-containing DNA, [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+, upon excitation and intramolecular quenching, is capable of injecting charge into the duplex based upon the EPR detection of guanine radicals. DNA-mediated charge transport is also indicated using a kinetically fast cyclopropylamine-substituted base as an electron hole trap. Guanine damage is not observed, however, in measurements using the guanine radical as the kinetically slower hole trap, indicating that back electron-transfer reactions are competitive with guanine oxidation. Moreover, transient absorption measurements reveal a novel photophysical reaction pathway for [{Ru(phen)(dppz)(bpy'-his)}{Ru(NH3)5}]5+ in the presence of DNA that is competitive with the intramolecular flash-quench process. These results illustrate the remarkably rich redox chemistry that can occur within a bimolecular ruthenium complex intercalated in duplex DNA.  相似文献   

8.
Olmon ED  Hill MG  Barton JK 《Inorganic chemistry》2011,50(23):12034-12044
Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)(2)(bpy')](3+) (phi = 9,10-phenanthrenequinone diimine; bpy' = 4-methyl-4'-(butyric acid)-2,2'-bipyridine), [Ir(ppy)(2)(dppz')](+) (ppy = 2-phenylpyridine; dppz' = 6-(dipyrido[3,2-a:2',3'-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)(3)(dppz)(py')](+) (dppz = dipyrido[2,3-a:2',3'-c]phenazine; py' = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yields of the three complexes.  相似文献   

9.
You Y  Nam W 《Chemical Society reviews》2012,41(21):7061-7084
The development of cyclometalated Ir(III) complexes has enabled important breakthroughs in electroluminescence because such complexes permit the efficient population of triplet excited states that give rise to luminescent transitions. The triplet states of Ir(III) complexes are advantageous over those of other transition metal complexes in that their electronic transitions and charge-transfer characteristics are tunable over wide ranges. These favorable properties suggest that Ir(III) complexes have significant potential in a variety of photofunctions other than electroluminescence. In this critical review, we describe recent photonic applications of novel Ir(III) complexes. Ir(III) complexes have been shown to affect the exciton statistics in the active layers of organic photovoltaic cells, thereby improving the photon-to-current conversion efficiencies. Nonlinear optical applications that take advantage of the strong charge-transfer properties of triplet transitions are also discussed. The tunability of the electrochemical potentials facilitates the development of efficient photocatalysis in the context of water photolysis or organic syntheses. The photoredox reactivities of Ir(III) complexes have been employed in studies of charge migration along DNA chains. The photoinduced cytotoxicity of Ir(III) complexes on live cells suggests that the complexes may be useful in photodynamic therapy. Potential biological applications of the complexes include phosphorescence labeling and sensing. Intriguing platforms based on cyclometalated Ir(III) complexes potentially provide novel protein tagging and ratiometric detection. We envision that future research into the photofunctionality of Ir(III) complexes will provide important breakthroughs in a variety of photonic applications.  相似文献   

10.
A near-white light-emitting polymer, consisting of hole transport (HT), electron transport (ET), and phosphorescent Pt functionalities, was prepared and utilized as the emissive layer in solution-processed OLEDs. The air-stable devices had a maximum external quantum efficiency of 4.6%.  相似文献   

11.
In principle, DNA-mediated charge transfer processes can be categorized as oxidative hole transfer and reductive electron transfer. With respect to the routes of DNA damage most of the past research has been focused on the investigation of oxidative hole transfer or transport. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology.  相似文献   

12.
5-(Pyren-1-yl)-2'-deoxyuridine (PydU) and 5-(Pyren-1-yl)-2'-deoxycytidine (PydC) were used as model nucleosides for DNA-mediated reductive electron transport (ET) in steady-state fluorescence and femtosecond time-resolved transient absorption spectroscopy studies. Excitation of the pyrene moiety in PydU and PydC leads to an intramolecular electron transfer that yields the pyrenyl radical cation and the corresponding pyrimidine radical anion (dU.- and dC.-. By comparing the excited state dynamics of PydC and PydU, we derived information about the energy difference between the two pyrimidine radical anion states. To determine the influence of protonation on the rates of photoinduced intramolecular ET, the spectroscopic investigations were performed in acetonitrile, MeCN, and in water at different pH values. The results show a significant difference in the basicity of the generated pyrimidine radical anions and imply an involvement of proton transfer during electron hopping in DNA. Our studies revealed that the radical anion dC.- is being protonated even in basic aqueous solution on a picosecond time scale (or faster). These results suggest that protonation of dC.- may also occur in DNA. In contrast, efficient ET in PydU could only be observed at low pH values (< 5). In conclusion, we propose--based on the free energy differences and the different basicities--that only dT.- but not dC.- can participate as an intermediate charge carrier for excess electron migration in DNA.  相似文献   

13.
Using the flash-quench technique to probe DNA charge transport in assemblies containing a tethered ruthenium intercalator, the kinetics and yield of methylindole radical formation as a function of DNA sequence were studied by laser spectroscopy and biochemical methods. In these assemblies, the methylindole moiety serves as an artificial base of low oxidation potential. Hole injection and subsequent formation of the methylindole radical cation were observed at a distance of over 30 A at rates >/=107 s-1 in assemblies containing no guanine bases intervening the ruthenium intercalator and GMG oxidation site. Radical yield was, however, strikingly sensitive to an intervening base mismatch; no significant methylindole radical formation was evident with an intervening AA mismatch. Also critical is the sequence at the injection site; this sequence determines initial hole localization and hence the probability of hole propagation. With guanine rather than inosine near the site of hole injection, decreased yields of radicals and long-range oxidative damage are observed. The presence of the low-energy guanine site in this case serves to localize the hole and therefore diminish charge transport through the base pair stack.  相似文献   

14.
The dynamics of single-step hole transport processes have been investigated in a number of DNA conjugates possessing a stilbenedicarboxamide electron acceptor, a guanine primary donor, and several secondary donors. Rate constants for both forward and return hole transport between the primary and secondary donor are obtained from kinetic modeling of the nanosecond transient absorption decay profiles of the stilbene anion radical. The kinetic model requires that the hole be localized on either the primary or the secondary donor and not delocalized over both the primary and the secondary donor. Rate constants for hole transport are found to be dependent upon the identity of the secondary donor, the intervening bases, and the location of the secondary donor in the same strand as the primary donor or in the complementary strand. Rate constants for hole transport are much slower than those for the superexchange process used to inject the hole on the primary donor. This difference is attributed to the larger solvent reorganization energy for charge transport versus charge separation. The hole transport rate constants obtained in these experiments are consistent with experimental data for single-step hole transport from other transient absorption studies. Their relevance to long-distance hole migration over tens of base pairs remains to be determined. The forward and return hole transport rate constants provide equilibrium constants and free energies for hole transport equilibria. Secondary GG and GGG donors are found to form very shallow hole traps, whereas the nucleobase deazaguanine forms a relatively deep hole trap. This conclusion is in accord with selected strand cleavage data and thus appears to be representative of the behavior of holes in duplex DNA. Our results are discussed in the context of current theoretical models of hole transport in DNA.  相似文献   

15.
We have proposed that DNA-mediated charge transport (CT) is gated by base motions, with only certain base conformations being CT-active; a CT-active conformation can be described as a domain, a transiently extended pi-orbital defined dynamically by DNA sequence. Here, to explore these CT-active conformations, we examine the yield of base-base CT between photoexcited 2-aminopurine (Ap*) and guanine in DNA in rigid LiCl glasses at 77 K, where conformational rearrangement is effectively eliminated. Duplex DNA assemblies (35-mers) were constructed containing adenine bridges Ap(A)nG (n = 0-4). The yield of CT was monitored through fluorescence quenching of Ap* by G. We find, first, that the emission intensity of Ap* in all DNA duplexes increases dramatically upon cooling and becomes comparable to free Ap*. This indicates that all quenching of Ap* in duplex DNA is a dynamic process that requires conformational motion of the DNA bases. Second, DNA-mediated CT between Ap* and G is not observed at 77 K; rather than hindering the ability of DNA to transport charge, conformational motion is required. Moreover, the lack of DNA-mediated CT at 77 K, even through the shortest bridge, suggests that the static structures adopted upon cooling do not represent optimum CT-active conformations. These observations are consistent with our model of conformationally gated CT. Through conformational motion of the DNA bases, CT-active domains form and break-up transiently, both facilitating and limiting CT.  相似文献   

16.
Using intercalated, covalently bound daunomycin as a redox probe, ground state charge transport in DNA films with a perturbation in base pair stacking was examined in comparison with breaks in the sugar-phosphate backbone. While the introduction of one or even two nicks in the sugar-phosphate backbone yields no detectable effect on electron transfer, a CA mismatch significantly attenuates the electron transfer yield. These results confirm that the base pair stack is the pathway for DNA-mediated charge transfer, not the sugar-phosphate backbone.  相似文献   

17.
Scanning electrochemical microscopy was used to examine electron transfer across a self-assembled monolayer of thiol-modified DNA duplexes on a gold electrode. The apparent rate constant for heterogeneous ET from a solution redox probe, Fe(CN)6(3-/4-), to the gold surface through ds-DNA was 4.6 (+/-0.2) x 10(-7) cm/s. With the addition of Zn2+, which resulted in the formation of a metalated DNA (M-DNA) monolayer, the rate constant increased to 5.0 (+/-0.3) x 10(-6) cm/s. Upon treating M-DNA with EDTA, the zinc ions were released from the monolayer and the original rate constant for the DNA duplexes was restored. The enhanced ET rate was also observed at a DNA monolayer treated with Ca2+ or Mg2+, which does not complex by the DNA bases to form M-DNA. The binding of these cations facilitated the monolayer penetration by the probe mediator Fe(CN)6(3-/4-) and accordingly caused an increased redox signal of the mediator at the ds-DNA-modified electrode. Cationic or neutral mediators were not blocked by the ds-DNA monolayer. These results suggest that although the increased electron transport through M-DNA could partially be ascribed to the intrinsic enhancement of electric conductivity of M-DNA, which has been confirmed by photochemical studies, the change in the surface charge of DNA monolayers on the electrode caused by the binding of metal ions to DNA molecules may play a more important role in the enhancement of current with M-DNA.  相似文献   

18.
A series of N^N,O^O-bridging ligands based on substituted 1-(pyridin-2-yl)-3-methyl-5-pyrazolone and their corresponding heteroleptic iridium(III) complexes as well as Ir-Eu bimetallic complexes were synthesized and fully characterized. The influence of the triplet energy levels of the bridging ligands on the energy transfer (ET) process from the Ir(III) complexes to Eu(III) ions in solution was investigated at 77 K in Ir(III)/Eu(III) dyads. Photophysical experiment results show the bridging ligands play an important role in the ET process. Only when the triplet energy level of the bridging ligand was lower than the triplet metal-to-ligand charge transfer ((3)MLCT) energy level of the Ir moiety, was pure emission from the Eu(III) ion observed, implying complete ET took place from the Ir moiety to the Eu(III) ion.  相似文献   

19.
Whether the DNA base pair stack might serve as a medium for efficient, long-range charge transfer has been debated almost since the first proposal of the double-helical structure of DNA. The consequences of long-range radical migration through DNA are important with respect to understanding carcinogenesis and mutagenesis. Double-helical DNA has in its core a stacked array of aromatic heterocyclic base pairs, and this molecular π stack represents a unique system in which to explore the chemistry of electron transfer. We designed a family of metal complexes which bind to DNA by intercalative stacking within the helix; these metallointercalators may be usefully applied in probing DNA-mediated electron transfer. Here we describe a range of electron transfer reactions we carried out which are mediated by the DNA base paired stack. In some cases, DNA serves as a bridge, and spectroscopic analyses permit us to probe how the π stack couples DNA-bound donors and acceptors. These studies point to the sensitivity of coupling to DNA intercalation. However, if the DNA π stack effectively bridges donors and acceptors, the base-pair stack itself might serve not only as a conduit for electron transfer in DNA, but also in reactions initiated from a remote position. We carried out a series of reactions involving oxidative damage to DNA arising from the remotely positioned oxidant on the helix. The implications of long-range charge migration through DNA to effect damage are substantial. As in other DNA-mediated charge transfers, these reactions are highly dependent on DNA intercalation and the integrity of the intervening base-pair stack, but not on molecular distance. Furthermore, a physiologically important DNA lesion, the thymine dimers, can be reversed in a reaction initiated by electron transfer. This repair reaction can also be promoted from a distance as a result of long-range charge migration through the DNA base pair stack.  相似文献   

20.
Investigation of hole or excess electron hopping in DNA is mostly performed based on yield studies, in which an injector modified DNA duplex is irradiated to continuously inject either holes or electrons into the duplex. Observed is a chemical reaction of a "probe" molecule, which can be either one of the two purine bases or a different trap molecule positioned at various distances. The next step in the field will be the direct time resolution of the hole or electron transfer kinetics in DNA. Herein we describe the development of defined donor-DNA-acceptor systems, with properties that may allow time resolved electron and hole transfer studies in stably folded DNA structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号