首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of metal ions with aspartic (Asp) and glutamic (Glu) acid and the role of gas-phase acidity on zwitterionic stability were investigated using infrared photodissociation spectroscopy in the spectral range 950-1900 cm (-1) and by hybrid density functional theory. Lithium ions interact with both carbonyl oxygen atoms and the amine nitrogen for both amino acids, whereas cesium interacts with both of the oxygen atoms of the C-terminus and the carbonyl oxygen of the side chain for Asp. For Glu, this structure is competitive, but a structure in which the cesium ion interacts with just the carbonyl oxygen atoms is favored and the calculated spectrum for this structure is more consistent with the experimentally measured spectrum. In complexes with either of these metal ions, both amino acids are non-zwitterionic. In contrast, Glu*Ca (2+) and Glu*Ba (2+) both adopt structures in which Glu is zwitterionic and the metal ion interacts with both oxygens of the C-terminal carboxylate and the carbonyl oxygen in the side chain. Assignment of the zwitterionic form of Glu is strengthened by comparisons to the spectrum of the protonated form, which indicate spectral features associated with a protonated amino nitrogen. Comparisons with results for glutamine, which adopts nearly the same structures with these metal ions, indicate that the lower Delta H acid of Asp and Glu relative to other amino acids does not result in greater relative stability of the zwitterionic form, a result that is directly attributed to effects of the metal ions which disrupt the strong interaction between the carboxylic acid groups in the isolated, deprotonated forms of these amino acids.  相似文献   

2.
Negative ion ESI mass spectrometry was used to study the gas-phase stability and dissociation pathways of peptide-DNA complexes. We show that bradykinin and three modified peptides containing the basic residue arginine or lysine form stable interactions with single-stranded oligonucleotides. ESI-MS/MS of complexes of T(8) with PPGFSPFRR resulted in a major dissociation pathway through cleavage of the peptide covalent bond. The stability of the complex is due to electrostatic interaction between the negatively charged phosphate group and the basic side chain of the arginine and lysine residues as demonstrated by Vertes et al. and Woods et al. In fact, the present work establishes the role played by zwitterions on complex stabilisation. The presence of protons in nucleobase and/or amino acid contributes in reinforcing the strength of the salt bridge (SB) interaction. The zwitterionic form of the most basic of amino acid residues, arginine, is assumed to form a strong SB interaction to the negatively charged phosphate groups of DNA. This non-covalent complex is stable enough to withstand disruption of the non-covalent interaction and to first break the covalent bond. Moreover, the dependence of fragmentation patterns upon the complex charge state is explained by the fact that the net number of negative charges modulates the number of zwitterionic sites, which stabilise the complexes. Finally, the weak influence of the nucleobase is assumed by the existence of competition for proton addition between the nucleobase and the R/K side chain leading to a decrease in the stabilisation of the SB interaction.  相似文献   

3.
A chromatographic method for studying small effects of ligand stereoselectivity in the formation of labile metal complexes has been developed. It is shown that unidentate ligands can react stereospecifically with labile optically active metal complexes. An anion-exchanger charged with an optically active form of FeIII-N-(2-hydroxy-ethyl)-propylenediamine triacetate is used as a support in chromatography of N-acylated amino acids, and differences in retentions have been measured by elution and by frontal analysis.  相似文献   

4.
Alkali metal cations easily form complexes with proteins in biological systems; understanding amino acid clusters with these cations can provide useful insight into their behaviors at the molecular level including diagnosis and therapy of related diseases. For the purpose of characterization of basic interaction between amino acids and alkali metal, each of the 20 naturally occurring amino acids were ionized in the presence of lithium, sodium and potassium cations by electrospray ionization, and the resulting product ions were analyzed. We focus our attention on the gas phase alkali metal ion-proton exchanged complexes in current study, specifically complexes with serine, threonine, asparagine and glutamine, which share characteristic pattern unlike other amino acids. All amino acids generated [M + H](+) and [M + Na](+) ions, where M stands for the neutral amino acid. Serine, threonine, asparagine and glutamine generated cluster ions of [nM - nH + (n + 1)Na](+) and [nM - (n - 1)H + (n - 1)Na + K](+) , where n = 1-7. While the (M - H + Li) and (M - H + K) species were not observed, the neutral (M - H + Na) species formed by proton-sodium cation exchange had a highly stable cyclic structure with ketone and amine ligand sites, suggesting that (M - H + Na) serves as a building block in cluster ion formation. Cluster ion intensity distributions of [nM - nH + (n + 1)Na](+) and [nM - (n - 1)H + (n - 1)Na + K](+) showed a magic number at n = 3 and 4, respectively. Extensive B3LYP-DFT quantum mechanical calculations were carried out to elucidate the geometry and energy of the cluster ions, and they provided a reasonable explanation for the stability and structure of the cluster ions.  相似文献   

5.
Crystalline complex fluoroantimonates(III) with amino acids (glycine, β-alanine, DL-serine, DL-valine, L-leucine, and L-phenylalanine) have been prepared. The complexes stability in aqueous solutions has been studied with the cementation method. 1H NMR studies of aqueous solutions of the amino acids complexes with SbF3 at pH 1–6 and room temperature are reported. Preparation of polycrystalline metal antimony in aqueous solutions of tetrafluoroantimonates(III) complexes with the protonated amino acids has been demonstrated.  相似文献   

6.
The interaction of ampholyte propylenimine dendrimers containing peripheral carboxyl groups and inner tertiary amino groups with linear polyelectrolytes has been studied. Both in acidic and alkaline media up to pH ~ pI, dendritic polyampholytes can form interpolyelectrolyte complexes with flexible linear polyanions and polycations. A variation in the composition of complexes with a change in pH is associated with the formation of intramolecular zwitterion pairs in a dendrimer molecule. The ability of interpolyelectrolyte complexes to dissolve in water is shown to be determined by the degree of dissociation of ionogenic groups of the dendrimer not directly involved in the formation of interpolyelectrolyte salt bonds stabilizing the complex. It has been demonstrated that the territorial separation of carboxyl and tertiary amino groups in the polyampholyte dendrimers is reflected in different structures of interpolyelectrolyte complexes formed by dendrimers with oppositely charged linear polyions.  相似文献   

7.
El-Haty MT  Amrallah AH  Mahmoud RA  Ibrahim AA 《Talanta》1995,42(11):1711-1717
The stability constants of binary and ternary complexes of copper(II) and nickel(II) with some amino acids (d-histidine, dl-serine, lysine) as primary ligands and benzimidazole as a secondary ligand were determined pH-metrically. The study was conducted in 10% (v/v) ethanol-H(2)O medium and at an ionic strength of 0.1 mol dm(-3) NaNO(3) at 20 +/- 1 degrees C, Values of Delta log K were discussed on the basis of statistical considerations and the nature of the species formed. The stability of the binary and mixed ligand complexes are discussed in terms of the molecular structure of benzimidazole and the amino acids as well as the nature of the metal ion.  相似文献   

8.
Experimental and theoretical studies are carried out to determine the influence of thioketo substitution on the properties of uracil and its noncovalent interactions with alkali metal ions. Bond dissociation energies of alkali metal ion-thiouracil complexes, M(+)(SU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M(+) = Li(+), Na(+), and K(+) and SU = 2-thiouracil, 4-thiouracil, 2,4-dithiouracil, 5-methyl-2-thiouracil, and 6-methyl-2-thiouracil. Ab initio electronic structure calculations are performed to determine the structures and theoretical bond dissociation energies of these complexes and provide molecular constants necessary for thermodynamic analysis of the experimental data. Theoretical calculations are also performed to examine the influence of thioketo substitution on the acidities, proton affinities, and A::SU Watson-Crick base pairing energies. In general, thioketo substitution leads to an increase in both the proton affinity and the acidity of uracil. 2-Thio substitution generally results in an increase in the alkali metal ion binding affinities but has almost no affect on the stability of the A::SU base pair. In contrast, 4-thio substitution results in a decrease in the alkali metal ion binding affinities and a significant decrease in the stability of the A::SU base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of both single-stranded and double-stranded nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

9.
Aromatic side chains on amino acids influence the fragmentations of cationic complexes of doubly charged metal ions and singly deprotonated peptides. The metal ion interacts with an aromatic side chain and binds to adjacent amide nitrogens. When fragmentation occurs, this bonding leads to the formation of abundant metal-containing a-type ions by reactions that occur at the sites of amino acids that contain the aromatic side chain. Furthermore, formation of metal-containing immonium ions of the amino acids that contain the aromatic side chain also are formed. The abundant a-type ions may be useful in interpretation strategies in which it is necessary to locate in a peptide the position of an amino acid that bears an aromatic side chain.  相似文献   

10.
Interactions between divalent metal ions and biomolecules are common both in solution and in the gas phase. Here, the intrinsic effect of divalent alkaline earth metal ions (Be, Mg, Ca, Sr, Ba) on the structure of glycine in the absence of solvent is examined. Results from both density functional and Moller-Plesset theories indicate that for all metal ions except beryllium, the salt-bridge form of the ion, in which glycine is a zwitterion, is between 5 and 12 kcal/mol more stable than the charge-solvated structure in which glycine is in its neutral form. For beryllium, the charge-solvated structure is 5-8 kcal/mol more stable than the salt-bridge structure. Thus, there is a dramatic change in the structure of glycine with increased metal cation size. Using a Hartree-Fock-based partitioning method, the interaction between the metal ion and glycine is separated into electrostatic, charge transfer and deformation components. The charge transfer interactions are more important for stabilizing the charge-solvated structure of glycine with beryllium relative to magnesium. In contrast, the difference in stability between the charge-solvated and salt-bridge structure for magnesium is mostly due to electrostatic interactions that favor formation of the salt-bridge structure. These results indicate that divalent metal ions dramatically influence the structure of this simplest amino acid in the gas phase.  相似文献   

11.
The gas-phase structures of alkali-metal cationized glutamine are investigated by using both infrared multiple photon dissociation (IRMPD) action spectroscopy, utilizing light generated by a free electron laser, and theory. The IRMPD spectra contain many similarities that are most consistent with glutamine adopting nonzwitterionic forms in all ions, but differences in the spectra indicate that the specific nonzwitterionic forms adopted depend on metal-ion identity. For ions containing small alkali metals, the metal ion is solvated predominantly by the amino group, the carbonyl oxygen of the carboxylic acid group, and the carbonyl oxygen of the amide group. With increasing alkali-metal-ion size, additional structures are present in which the carboxylic acid group donates a hydrogen bond to the amino group and the metal ion is solvated only by the amide and carboxylic acid groups. The effects of alkylation of the amino and amide groups on the proton affinity of isolated glutamine and the relative zwitterion stability of sodiated glutamine were examined computationally. Methylation of the amino group increases the proton affinity of isolated glutamine and preferentially stabilizes the zwitterionic form of sodiated glutamine by roughly 20 kJ/mol. Ethylation and isopropylation of the amide group each increase the proton affinity of isolated glutamine by roughly 13 kJ/mol but preferentially stabilize the zwitterionic form of sodiated glutamine by less than 3 kJ/mol. These results indicate that effects of proton affinity on relative zwitterion stability compete with effects of metal-ion solvation.  相似文献   

12.
The formation and dissociation of dimer complexes consisting of a transition metal ion and two polyether ligands is examined in a quadrupole ion trap mass spectrometer. Reactions of three transition metals (Ni, Cu, Co) with three crown ethers and four acyclic ethers (glymes) are studied. Singly charged species are created from ion-molecule reactions between laser-desorbed monopositive metal ions and the neutral polyethers. Doubly charged complexes are generated from electrospray ionization of solutions containing metal salts and polyethers. For the singly charged complexes, the capability for dimer formation by the ethers is dependent on the number of available coordination sites on the ligand and its ability to fully coordinate the metal ion. For example, 18-crown-6 never forms dimer complexes, but 12-crown-4 readily forms dimers. For the more flexible acyclic ethers, the ligands that have four or more oxygen atoms do not form dimer complexes because the acyclic ligands have sufficient flexibility to wrap around the metal ion and prevent attachment of a second ligand. For the doubly charged complexes, dimers are observed for all of the crown ethers and glymes, thus showing no dependence on the flexibility or number of coordination sites of the polyether. The nonselectivity of dimer formation is attributed to the higher charge density of the doubly charged metal center, resulting in stronger coordination abilities. Collisionally activated dissociation is used to evaluate the structures of the metal-polyether dimer complexes. Radical fragmentation processes are observed for some of the singly charged dimer complexes because these pathways allow the monopositive metal ion to attain a more favorable 2 + oxidation state. These radical losses are observed for the dimer complexes but not for the monomer complexes because the dimer structures have two independent ligands, a feature that enhances the coordination geometry of the complex and allows more flexibility for the rearrangements necessary for loss of radical species. Dissociation of the doubly charged complexes generated by electrospray ionization does not result in losses of radical neutrals because the metal ions already exist in favorable 2+ oxidation states.  相似文献   

13.
The heat capacity of hydration of zwitterions derived from aliphatic amino acids depends linearly on the surface area of the amino acid side radicals accessible to water molecules with the slopeb = 2.35±0.11 J mol–1 K–1 Å–2 at 298 K. The linear correlation between hydration heat capacities of zwitterions of aliphatic amino acids and the corresponding aliphatic alcohols with a coefficient of approximately unity confirms the assumption that hydrophobic hydration does not depend on the nature of the surrounding groups. Using the assumption that the hydration of hydrocarbon radicals is independent of the neighboring groups, theb value has been used to calculate the contributions of polar groups. The contributions of OH, COON, and CONH groups of the side radicals in polar amino acids in the zwitterion form are close to zero; in the case of organic nonionic molecules, these contributions are negative. The increments for polar groups obtained for the zwitterions can be used for the calculation of the heat capacities of proteins and polypeptides incorporating charged amino acid residues. The difference between hydrophilic and hydrophobic hydration mechanisms is manifested not only as different magnitudes and signs of heat capacities and temperature coefficients but also in the fact that the neighboring polar (charged) groups have an effect on hydrophilic hydration but have no effect on hydrophobic hydration.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2237–2242, September, 1996.  相似文献   

14.
螯合金属离子亲和色谱法分离α-氨基酸和肽   总被引:1,自引:0,他引:1  
程慧文  邵天梦 《色谱》1997,15(5):405-407
 以SephadexG10为基质螯合二价铜离子的亲和色谱法分离α-氨基酸和肽,使之得以完全分离。对分离过程的原理进行了讨论。  相似文献   

15.
Structures and binding thermochemistry are investigated for protonated PhePhe and for complexes of PhePhe with the alkaline-earth ions Ba(2+) and Ca(2+), the alkali-metal ions Li(+), Na(+), K(+), and Cs(+), and the transition-metal ion Ag(+). The two neighboring aromatic side chains open the possibility of a novel encapsulation motif of the metal ion in a double cation-π configuration, which is found to be realized for the alkaline-earth complexes and, in a variant form, for the Ag(+) complex. Experimentally, complexes are formed by electrospray ionization, trapped in an FT-ICR mass spectrometer, and characterized by infrared multiple photon dissociation (IRMPD) spectroscopy using the free electron laser FELIX. Interpretation is assisted by thermochemical and IR spectral calculations using density functional theory (DFT). The IRMPD spectrum of protonated PhePhe is reproduced with good fidelity by the calculated spectrum of the most stable conformation, although the additional presence of the secondmost stable conformation is not excluded. All metal-ion complexes have charge-solvated binding modes, with zwitterion (salt bridge) forms being much less stable. The amide oxygen always coordinates to the metal ion, as well as at least one phenyl ring (cation-π interaction). At least one additional chelation site is always occupied, which may be either the amino nitrogen or the carboxy carbonyl oxygen. The alkaline-earth complexes prefer a highly compact caged structure with both phenyl rings providing cation-π stabilization in a "sandwich" configuration (OORR chelation). The alkali-metal complexes prefer open-cage structures with only one cation-π interaction, except perhaps Cs(+). The Ag(+) complex shows a unique preference for the closed-cage amino-bound NORR structure. Ligand-driven perturbations of normal-mode frequencies are generally found to correlate linearly with metal-ion binding energy.  相似文献   

16.
The reaction of 3,8,13,18-tetramethyl-21H,23H-porphine-2,7,12,17-tetrapropionic acid or coproporphyrin-I (CPI) with the elements of 11 group have been studied. CPI is an anionic porphyrin that slowly reacts with copper ion to form CuIICPI and with silver ions to form AgIICPI, AgIIICPI complexes and colloidal silver. Gold ions do not form complexes with CPI, but, in the main, colloidal gold and some CPI-N-oxide. The kinetics of the reactions with copper and silver were spectrophotometerically studied and the rate constants were calculated. The identification and characterization of this water-soluble anionic porphyrin and its metal complexes have been performed by electrospray mass spectrometry (ESI-MS) that proved to be an excellent method for these determinations. The multiple charged parent ions for metal free ligand and their metal complexes were identified.  相似文献   

17.
The structures of cationized arginine complexes [Arg + M]+, (M = H, Li, Na, K, Rb, Cs, and Ag) and protonated arginine methyl ester [ArgOMe + H]+ have been investigated in the gas phase using calculations and infrared multiple-photon dissociation spectroscopy between 800 and 1900 cm-1 in a Fourier transform ion cyclotron resonance mass spectrometer. The structure of arginine in these complexes depends on the identity of the cation, adopting either a zwitterionic form (in salt-bridge complexes) or a non-zwitterionic form (in charge-solvated complexes). A diagnostic band above 1700 cm-1, assigned to the carbonyl stretch, is observed for [ArgOMe + H]+ and [Arg + M]+, (M = H, Li, and Ag), clearly indicating that Arg in these complexes is non-zwitterionic. In contrast, for the larger alkali-metal cations (K+, Rb+, and Cs+) the measured IR-action spectra indicate that arginine is a zwitterion in these complexes. The measured spectrum for [Arg + Na]+ indicates that it exists predominantly as a salt bridge with zwitterionic Arg; however, a small contribution from a second conformer (most likely a charge-solvated conformer) is also observed. While the silver cation lies between Li+ and Na+ in metal-ligand bond distance, it binds as strongly or even more strongly to oxygen-containing and nitrogen-containing ligands than the smaller Li+. The measured IR-action spectrum of [Arg + Ag]+ clearly indicates only the existence of non-zwitterionic Arg, demonstrating the importance of binding energy in conformational selection. The conformational landscapes of the Arg-cation species have been extensively investigated using a combination of conformational searching and electronic structure theory calculations [MP2/6-311++G(2d,2p)//B3LYP/6-31+G(d,p)]. Computed conformations indicate that Ag+ is di-coordinated to Arg, with the Ag+ chelated by both the N-terminal nitrogen and Neta of the side chain but lacks the strong M+-carbonyl oxygen interaction that is present in the tri-coordinate Li+ and Na+ charge-solvation complexes. Experiment and theory show good agreement; for each ion species investigated, the global-minimum conformer provides a very good match to the measured IR-action spectrum.  相似文献   

18.
Copper can be found in many cosmetic formulations, mainly as complexes with peptides, hydroxyacids or amino acids. The main reason that the usage of this element in this context is still increasing is its beneficial biochemical activity, although the mechanism that enables its complexes to permeate through skin barriers is largely unknown. The ability of copper complexes with amino acids to penetrate through the stratum corneum and participate in copper ion transport processes is key to their cosmetic and pharmaceutical activities. The penetration process was studied in vitro in a model system, a Franz diffusion cell with a liposome membrane, where a liquid crystalline system with physicochemical properties similar to those of the intercellular cement of stratum corneum was used to model the skin barrier. The influences of various ligands on the model membrane migration rate of copper ions was studied, and the results highlighted the crucial roles of metal ion complex structure and stability in this process.  相似文献   

19.
The influence of halogenation on the properties of uracil and its noncovalent interactions with alkali metal ions is investigated both experimentally and theoretically. Bond dissociation energies of alkali metal ion-halouracil complexes, M+(XU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M+ = Li+, Na+, and K+ and XU = 5-fluorouracil, 5-chlorouracil, 6-chlorouracil, 5-bromouracil, and 5-iodouracil. The structures and theoretical bond dissociation energies of these complexes are determined from ab initio calculations. Theoretical calculations are also performed to examine the influence of halogenation on the acidities, proton affinities, and Watson-Crick base pairing energies. Halogenation of uracil is found to produce a decrease in the proton affinity, an increase in the alkali metal ion binding affinities, an increase in the acidity, and stabilization of the A::U base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.  相似文献   

20.
Chiral recognition of alpha-hydroxy acids has been achieved, and mixtures of enantiomers have been quantified in the gas phase, by using the kinetics of competitive unimolecular dissociation of singly-charged transition metal ion-bound trimeric complexes, [M(II)(A)(ref*)(2)-H](+) (M(II)=divalent transition metal ion; A=alpha-hydroxy acid; ref*=chiral reference ligand), to form the dimeric complexes [M(II)(A)(ref*)-H](+) and [M(II)(ref*)(2)-H](+). Chiral selectivity, the ratio of these two fragment ion abundances for the complex containing the analyte in one enantiomeric form expressed relative to that for the fragments of the corresponding complex containing the other enantiomer, ranges from 0.65 to 7.32. Chiral differentiation is highly dependent on the choice of chiral reference compound and central metal ion. The different coordination geometry of complexes resulting from the different d-orbital electronic configurations of these transition metal ions plays a role in chiral discrimination. Of all the transition metal ions examined chiral recognition is lowest for Cu(II), because of large distortion of the coordination complexes, and hence weak metal-ligand interactions and small stereochemical effects. It seems that two independent pi-cation interactions occur when N-acetyl-substituted aromatic amino acids used as the reference ligands and this accounts for improved chiral discrimination. If both metal-ligand and ligand-ligand interactions are optimized, large chiral selectivity is achieved. The sensitive nature of the methodology and the linear relationship between the logarithm of the fragment ion abundance ratio and the optical purity, which are intrinsic to the kinetic method, enable mixtures to be analyzed for small enantiomeric excess ( ee) by simply recording the ratios of fragment ion abundances in a tandem mass spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号