首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow is suggested. Under the assumption of perfect mixing in liquid plugs, the recurrent relations for temperature in then-th liquid plug and heat and mass fluxes from then-th gas slug are derived. Total mass and heat fluxes in gas-liquid slug flow during gas hydrate formation are determined.  相似文献   

2.
A model for mass and heat transfer during physical gas absorption in gas-liquid bubbly medium suggested in [1] is generalized for a case of chemical absorption accompanied by heat release. Diffusion and thermal interactions between bubbles are taken in to account in the approximation of a cellular model of a bubbly medium whereby a bubbly medium is viewed as a periodic structure consisting of identical spherical cells with periodic boundary conditions at a cell boundary. Distribution of concentration of the dissolved gas, temperature distribution in liquid and rates of mass and heat transfer during nonisothermal chemical absorption of a soluble pure gas from a bubble by liquid are determined. In the limiting case of chemical absorption without heat release the derived formulas recover the expressions for isothermal chemical absorption. In the limiting case of physical absorption with heat release the derived formulas recover the expressions for nonisothermal absorption obtained in [1].  相似文献   

3.
A model is developed for the analysis of mass transfer during isothermal absorption in a vertical gas-liquid slug flow at large Reynolds numbers with liquid plugs containing small bubbles. Simple formulas for mass flux from the N-th unit cell of gas-liquid slug flow and for total mass flux from N unit cells are derived. In the limiting case the derived formulas for mass transfer during gas absorption in a slug flow with liquid plugs containing small bubbles recover the derived expressions for mass transfer in slug flow without small bubbles in the liquid plugs. Using the developed model recommendations concerning the design of the absorber operating in a slug flow regime are suggested. Received on 28 July 1997  相似文献   

4.
A model for combined mass and heat transfer during nonisothermal gas absorption in a two-phase gasliquid bubbly medium with a high gas content and/or large times of gas-liquid contact is suggested. Diffusion and thermal interactions between bubbles is taken into account in the approximation of a cellular model of a bubbly medium whereby a bubbly medium is viewed as a periodic structure consisting of identical spherical cells with periodic boundary conditions at a cell boundary. Distribution of concentration of dissolved gas, temperature distribution in liquid and coefficients of mass and heat transfer during nonisothermal absorption of a soluble pure gas from a bubble by liquid are determined. In the limiting case of absorption without heat release the derived formulas recover the expressions for isothermal absorption.  相似文献   

5.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

6.
Current research proofs the potential of apparatuses containing minichannel flow structures to intensify gas-liquid-solid contacting processes. The excellent heat and mass transfer in these devices as well as a sharp RTD mainly result from the Taylor flow regime. A proper design of corresponding contactors requires precise information on the provided interfacial areas. However, the characterisation of gas-liquid Taylor flow with industrially relevant fluids at elevated pressure and created by capillary injection devices gained little attention so far.This work analyses adiabatic gas-liquid Taylor flow in a square minichannel of 1.0 mm hydraulic diameter using water, water-glycerol, or water-ethanol mixtures as liquid phase and hydrogen or nitrogen as gas phase to cover a broad range of material parameters. In the mixing zone located within the flow channel, gas was injected into the co-flowing liquid by so-called capillary injectors with variable inner diameter (0.184, 0.317, 0.490 mm).Two different bubble forming mechanisms were identified leading to a complex interaction between physical properties of the fluids, geometrical parameters and the observed gas bubble and liquid slug lengths. According to the Pi-theorem, these lengths were affected by 6 dimensionless groups, namely (uG,s/ uL,s), ReL, WeL, (dIn,CI/ dh), (dOu,CI / dh), and Θ*. Based on more than 370 experimental data, novel correlations to predict gas bubble and liquid slug lengths were developed.  相似文献   

7.
To clarify the impacts of the hydrodynamic boundary layer and the diffusion boundary layer in the near wall zone on gas–liquid two-phase flow induced corrosion in pipelines, the hydrodynamic characteristics of fully developed gas–liquid slug flow in an upward tube are investigated with limiting diffusion current probes, conductivity probes and digital high-speed video system. The Taylor bubble and the falling liquid film characteristics are studied, the effects of various factors are examined, and the experimental results are compared with the data and models available in literature. The length of Taylor bubble, the local void fraction of the slug unit and the liquid slug, the shear stress and mass transfer coefficient in the near wall zone, are all increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity, whereas the length of liquid slug and the liquid slug frequency are changed contrarily. The alternate wall shear stress due to upward gas–liquid slug flow is considered to be one of the major causes for the corrosion production film fatigue cracking. A normalized formula for mass transfer coefficient is obtained based on the experimental data.  相似文献   

8.
The gas–liquid–solid mini fluidized bed (GLSMFB) combines the advantages of fluidized bed and micro-reactor, and meets the requirements for safety and efficiency of green development of process industry. However, there are few studies on its flow performance and no studies on its mass and heat transfer performance. In this paper, the characteristics of gas–liquid mass transfer in a GLSMFB were studied in order to provide basic guidance for the study of GLSMFB reaction performance and application. Using CO2 absorption by NaOH as the model process, the gas–liquid mass transfer performance of GLSMFB was investigated. The results show that the liquid volumetric mass transfer coefficient and the gas–liquid interfacial area both increase with the increase of the superficial gas velocity within the experimental parameter range under the same given superficial liquid velocity. At the same ratio of superficial gas to liquid velocity, the liquid volumetric mass transfer coefficient increases with the increase of the superficial liquid velocity. Fluidized solid particles strengthen the liquid mass transfer process, and the liquid volumetric mass transfer coefficient is about 13% higher than that of gas–liquid mini bubble column.  相似文献   

9.
Study of local hydrodynamic characteristics of upward slug flow   总被引:4,自引:0,他引:4  
Results of an experimental study of local velocity, fluctuation and void fraction profiles in liquid plugs of an upward vertical gas-liquid flow as well as of wall shear stress distribution both under gas slugs and in liquid plugs, are presented. The conditional sampling technique allowed to obtain instantaneous profiles of the above hydrodynamical quantities, which illuminated the real physical picture of the flow in a liquid plug. The toroidal vortex adjacent to the bottom of a gas slug is shown to determine significantly the development of the flow in a liquid plug. The intensity of this vortex is determined only by the relative velocity of the gas bubble with respect to the liquid.  相似文献   

10.
This study is an attempt to investigate the chemical absorption of CO2 in aqueous monoethanolamine (MEA) solution in a wetted-wire column consisting of one wire. Computational fluid dynamics method along with volume of fluid model was employed for modeling of two-phase flow, mass transfer and chemical reaction inside the column. The modeling results were compared with available experimental data and very good agreement was achieved. The simulation results showed that the diameter and intervals of liquid beads increases by increasing the gas and liquid flow rates. The beads velocity increases by increasing the liquid flow rate and decreasing mass fraction of MEA in the liquid phase. Also, mass transfer resistance in the liquid phase reduces by formation of the beads. It was concluded that the developed model is capable to predict the effect of operating and physical parameters on the investigated chemical absorption process.  相似文献   

11.
In this work, the wall shear stress and the mass transfer coefficient of the gas–liquid two-phase upward slug flow in a vertical pipe are investigated experimentally, using limiting diffusion current probes and digital high-speed video system. In experiments, the instantaneous and averaged characteristics of wall shear stress and mass transfer coefficient are concerned. The experimental results are compared with the numerical results in previous paper of the authors. Both experiment and numerical simulation show that the superficial gas and liquid velocities have an obvious influence on the instantaneous characteristics of the two profiles. The mass transfer coefficient has characteristics similar to the wall shear stress. The instantaneous wall shear stress and mass transfer coefficient profiles have the periodicity of slug flow. The averaged wall shear stress and mass transfer coefficient increase with increased superficial gas velocity. However, there is inconsistency in the variation trends of the averaged wall shear stress and mass transfer coefficient with superficial liquid velocity between experimental result and numerical simulation result, which can be attributed to the difference in flow condition. Moreover, the Taylor bubble length is also another impacting factor. The experimental and numerical results all shows that the product scale can not be damaged directly by the flow movement of slug flow. In fact, the alternative forces and fluctuations with high frequency acting on the pipe wall due to slug flow is the main cause for the slug flow enhanced CO2 corrosion process.  相似文献   

12.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

13.
The study of mass transfer into falling films constitutes a significant aspect for numerous applications in the chemical technology and is considered the subject of many theoretical and experimental researches. Evaluating the second law of thermodynamics is one of the contemporarily used methods to determine the performances of an industrial process and to study various sources of irreversibility. Expressions of the liquid velocity, the gas concentration, the entropy generation rate as well as the main sources of irreversibility in the case of gas absorption (carbon dioxide) into a laminar falling viscous incompressible liquid film (water) without chemical reaction, are analytically derived and graphically presented and discussed.  相似文献   

14.
The study of mass transfer into falling films constitutes a significant aspect for numerous applications in the chemical technology and is considered the subject of many theoretical and experimental researches. Evaluating the second law of thermodynamics is one of the contemporarily used methods to determine the performances of an industrial process and to study various sources of irreversibility. Expressions of the liquid velocity, the gas concentration, the entropy generation rate as well as the main sources of irreversibility in the case of gas absorption (carbon dioxide) into a laminar falling viscous incompressible liquid film (water) without chemical reaction, are analytically derived and graphically presented and discussed.  相似文献   

15.
16.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.   相似文献   

17.
This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air–water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (ReL) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000–10000 and 0.003–0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air–water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent ReL and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived.  相似文献   

18.
In this paper we present an experimental study on the influence of surface active agents (surfactants) on Taylor bubble flow in a vertical millimeter-size channel. Moreover we give a short review on the subject and previous investigations. We investigated the shape and dissolution rate of individual elongated carbon dioxide Taylor bubbles, which were hydraulically fixed in a downward flow of water. Bubble shape and dissolution rate was determined from microfocus X-ray radiographs. From the shrinking rate we calculated the liquid side mass transfer coefficient.The results show that the presence of surfactants causes a change of the bubble shape and leads to a slight increase of the liquid film thickness around the bubble and as a result the elongation of contaminated bubbles. In addition, the comparison of clean and contaminated bubbles indicate that presence of surfactant has a more significant impact on the dissolution rate of small bubbles. Furthermore, applying different concentrations of surfactant reveals that in our case, where surface coverage ratio of surfactant on the bubbles is high, increase of contamination does not have a noticeable influence on the mass transfer coefficient of bubbles.  相似文献   

19.
The Navier-Stokes equations for a laminar flow of a compressible multispecies gas have been used to model numerically the heat and mass transfer processes in high-temperature chemical reactions of methane in water vapor with activation of reactions on the microchannel walls and external heat supply. The temperature and concentration fields are obtained, as well as the distributions of heat fluxes, reacting species, and local coefficients of heat and mass transfer along the channel. It is shown that a high degree of chemical conversion leads to nonmonotonical changes in reaction rates and velocities of transverse heat flows, and species along the microchannel, considerably affecting the local coefficients of heat and mass transfer.  相似文献   

20.
Summary A study of isothermal gas absorption by underpressurized, axisymmetric, thin, inviscid, incompressible, annular liquid jets which form enclosed volumes, where hazardous wastes may be burned, is presented. The study considers the nonlinear dynamical coupling between the fluid dynamics of, and the gases enclosed by, the annular liquid jet. It assumes equilibrium conditions at the interfaces, and employs Sievert's solubility law to determine the gas concentration at the gas-liquid interfaces. Both steady-state and transient conditions are considered. Under steady-state conditions, the fluid dynamics and mass transfer phenomena are uncoupled, and the rate of generation of combustion gases is equal to the mass absorption rate by the liquid. The transient behaviour of the annular jet is determined from initial conditions corresponding to steady-state operation, once there is no gas generation by the combustion of hazardous wastes. It is shown that, for most of the conditions considered in this paper, there is no leakage of gaseous combustion products through the jet's outer interface, and that the amount of gases dissolved in the liquid at the nozzle exit and the solubility ratio play a paramount role in determining the mass fluxes of hazardous combustion products at the annular jet's interfaces.The research reported in this paper was supported by Project PB91-0767 from the C.I.C.Y.T. of spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号