首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative cracking of precipitated hardwood lignin by hydrogen peroxide   总被引:1,自引:0,他引:1  
Precipitated hardwood lignin (PHL) is a major byproduct in the biomassto-ethanol process. Oxidativecracking of PHL by hydrogen peroxide in aqueous medium was investigated as a means to produce potentially useful chemicals. The cracking reaction takes place at moderate temperatures (80–160°C), giving mono-and dicarboxylic acids as the main products. The yields of these products are in the range of 30–50% of initial lignin. The reaction mechanism and the product distribution are dependent upon the reaction conditions, especially the pH. The reaction under strong alkaline condition proceeds well even at low reaction temperatures (80–90°C). Under acidic conditions, higher temperatures (130–160°C) are required to attain the same degrees of cracking. The reaction patterns of the oxidative cracking reaction involve the cleavage of lignin ring, aryl ether bond, or other linkages within lignin. By using the findings of this investigation and those of previous work, we have illustrated the reaction pathways for degradation of PHL under alkaline and acidic conditions. Aldehydes and aromatic acids are interm ediate products in the oxidative degradation of lignin. However, they were produced only in trace amounts owing to rapid degradation induced by hydrogen peroxide. Presented at the 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO, May 1999.  相似文献   

2.
赵岩.  徐清  傅尧  刘银 《化学通报》2017,80(3):278-282
木质素是一种绿色可再生的资源,是制备液体运输燃料的理想原料。本文研究了一种由木质素制备液体运输燃料的方法。首先,选用K-OMS-2催化剂进行氧化反应,通过氧化木质素单体模型物获得芳香醛,木质素二聚体模型物(α-O-4结构木质素二聚体)氧化解聚后获得了65%产率的芳香醛;同时尝试氧化碱木素,产物中检测到香草醛、对羟基苯甲醛等化合物;其次,通过芳香醛和丙酮发生Claisen-Schmidt缩合反应增加碳链长度;最后,通过芳烃加氢获得高品位的饱和烷烃燃料。  相似文献   

3.
A new capillary electrophoretic (CE) technique was developed for the separation of lignin degradation products after permanganate oxidation, yielding information about quality and quantity of various linkages in the lignin molecule. This CE method is a promising alternative to existing gas chromatographic (GC) methods. An advantage in comparison with GC is the short separation time and the fact that the oxidation products (aromatic acids) can be analyzed without derivatization. The selectivity and sensitivity of CE combined with UV detection is adequate and makes it suited for fast routine characterization of lignins. If necessary, the CE method can be coupled with electrospray ionization mass spectrometry in order to make a clear assignment of the peaks.  相似文献   

4.
Ionic liquids based on the 1-methylimidazolium cation with chloride, bromide, hydrogen sulfate, and tetrafluoroborate counterions along with 1-butyl-3-methylimidazolium hydrogen sulfate were employed to degrade two lignin model compounds, guaiacylglycerol-β-guaiacyl ether and veratrylglycerol-β-guaiacyl ether. The acidity of each ionic liquid was approximated using 3-nitroaniline as an indicator to measure the Hammett acidity (H0). While all of the tested ionic liquids were strongly acidic (H0 between 1.48 and 2.08), the relative acidity did not correlate with the ability of the ionic liquid to catalyze β-O-4 ether bond hydrolysis. The reactivity of the model compounds in the ionic liquids is dependent not only on the acidity, but also on the nature of the ions and their interaction with the model compounds.  相似文献   

5.
The effect of carbon and nitrogen sources, lignocellulosic substrates, and metal ions on lignin peroxidase (LiP) activity of Aspergillus sp., which was isolated from a mangrove area, was studied. Glucose (1%) was found to be the best carbon source. Among the various lignocellulosic substrates used, coir pith at 3% concentration increased LiP activity twofold on the second day of incubation. Peptone and KNO3 completely inhibited the enzyme synthesis while (NH4)2SO4 at 12.5 mM produced maximum activity. Since seawater contained all the requisite metal ions, any added ions had a negative effect on activity. Cu2+ had the most inhibiting effect while K+ the least. When all the optimized conditions were provided, in nitrogen- and carbon-sufficient medium, a maximum LiP activity of 345 U/mL was obtained on the second day of incubation.  相似文献   

6.
高鹏  李昌志  王华  王晓东  王爱琴 《催化学报》2013,34(10):1811-1815
利用尿素辅助溶剂热法合成了一系列LaFexMn1-xO3和La0.9Sr0.1MnO3纳米空心球材料,并采用X射线衍射、透射电子显微镜和物理吸附等方法对其晶相、形貌和比表面积进行了表征. 在木质素的催化湿式氧化反应(CWAO)中,该催化剂表现出比传统的柠檬酸溶胶-凝胶法制备的钙钛矿材料更高的催化活性. 这主要是由于空心球结构所致. 当T=120℃,p(O2)=0.2MPa时,CWAO反应1h后木质素转化率超过80%. 反应后组分离子溶出量很低,表明由于钙钛矿相结构的存在,催化剂在该反应条件下非常稳定.  相似文献   

7.
8.
The lignin peroxidase (LiP) catalyzed oxidation of pyrogallol red (PR) in the absence and presence of veratryl alcohol (3,4-dimethoxybenzyl alcohol, VA) was carried out in bis (2-ethylhexyl) sulfosuccinate sodium (AOT)/ polyoxyethylene lauryl ether (Brij30) reversed micelles to elucidate the role of VA. Results indicated that VA could accelerate the LiP catalyzed oxidation of PR, especially at low H2O2 concentrations. Unlike in bulk aqueous medium, the protection of LiP by VA in the present medium was relatively unsubstantial, even at high H2O2 concentrations. Analysis of data from a series of experiments showed that the enhancement of the PR oxidation caused by VA was mainly due to the indirect oxidation of PR by VA+∙ from the LiP catalyzed oxidation of VA. It was also found that at the same protector concentration (40 μM), VA (the physiological substrate of LiP) was less effective than PR (a phenolic compound) in protecting LiP from the H2O2 derived inactivation. This novel phenomenon deserves further study.   相似文献   

9.
木质素是地球上产量最大的芳香类有机高分子,其有效转化利用在近年来备受关注.催化降解木质素制备酚类单体在过去十年取得了长足进步,目前已开发出氢解、水解、热解、氧化、光解等一系列方法.通过加氢脱氧法可以将木质素的降解产物转化为烃类燃料,但该过程耗氢量大,并且芳香环在加氢气氛下被破坏.另一个可能的应用是将木质素衍生物进一步转化为高附加值的芳香族化合物,但解聚产物成分复杂,成为木质素高效转化为单一高附加值化学品的瓶颈.在加氢条件下,木质素解聚产物主要为酚类混合物,多在羟基临位带有一至两个甲氧基,并在对位带有C2或C3的取代基(多为烷基).针对这一结构特点,我们设计了新反应路径,通过分别去除甲氧基和烷基得到苯酚.该过程保留了苯酚的基本结构而将其他取代基去除,原理上可以有效的将木质素降解的混合物转化为单一产物苯酚.通过催化剂的筛选和优化,Pt/C催化剂对脱甲氧基显示出最好的活性和选择性,在400°C,常压下脱除效率80%.在流动气氛下连续工作4 h,Pt/C催化剂无失活迹象.H-ZSM-5为最有效的脱烷基催化剂,最优效率83%左右.H-ZSM-5在反应过程中逐渐失活.通过热重差热及红外光谱分析,失活主要原因为积碳.在400°C空气中煅烧后,催化剂可以再生.通过简单的物理混合,Pt/C和H-ZSM-5一步将木质素单体转化为60%的苯酚,显示了该方法直接转化木质素到高附加值苯酚的巨大潜力.这是同时将木质素中甲氧基、烷基选择性脱除的首例报道.经过估算,从原生木质素出发,通过加氢解聚,耦合本文开发的一步脱甲氧基、烷基路径,可将木质素转化为约25%的苯酚.木质素中的甲氧基、烷基将分别转化为甲醇和烯烃,提高了木质素碳资源的利用效率.  相似文献   

10.
In this study, formation and quantification of mechanochemically generated free radicals of lignin were evaluated after the extraction of lignin from olive seeds and detailed lignin characterization was performed. Lignin was extracted from crushed olive seeds as an insoluble solid using Klason method. Isolated lignin was mechanochemically grinded under cryo conditions using Cryomill and particlesizes were determined by using Zeta Sizer, structural changes were followed by XRD and FTIR-ATR; thermal stabilities were tracked by TGA and DSC. In order to enable solubility demanding studies (such as 1H‑NMR and GPC), acylation of lignin was accomplished. ESR measurements were completed to prove the nature of the radicals. Free radicals cavenging activity of olive seed lignin was determined and quantified using 2-diphenyl-1-picrylhydrazyl (DPPH) method. Number of created mechanoradicals (per gram of olive seed lignin) was calculated from the corresponding UV‑Vis spectra. Finally, morphological changes of the lignin over cryomilling was evaluated using SEM.  相似文献   

11.
In this work, we proposed a facile one-pot pyrolysis method to conveniently manufacture lignin-derived carbon materials with graded porous construction for use in supercapacitors. The renewable lignin was selected as precursor, while the potassium citrate was used as a pore-forming agent. The properties of the prepared lignin-derived carbon (LAC) and the performance for supercapacitor application were thoroughly evaluated. The LAC at optimal preparation conditions shows a layered porous structure with a large specific surface area of 3174 cm2 g−1 and pore volume of 2.796 cm3 g−1, where the specific capacitance reach to 241 F g−1 at 1 A g−1 scan rate in 6 M KOH electrolyte solution. At the same time, the specific capacitance remains at 220 F g−1 even at an excessive scan velocity of 20 A g−1, while the capacitance retention is still close to 91.3%. The capacitance retention rate is stable above 95% after 10,000 charge/discharge cycles, which shows the desired long-time stability. All these results demonstrate the outstanding properties of the new prepared LAC material and the considerable application potential in the field of electrical energy storage.  相似文献   

12.
Termites, beetles, and other arthropods can digest living and decaying wood plus other lignocellulosic plant litter. Microbial sources like other wood-eating insect guts and wastewater treatment sludge were screened for lignin depolymerization. Near infrared spectroscopy and atomic force microscopy (AFM) along with high-performance liquid chromatography (HPLC), were used to track changes in functional groups, size, shape, and molecular weight of lignin molecules during incubations. Odontotaenius disjunctus (Betsy beetle) guts dissected whole or separately as midgut, foregut, and hindgut, consumed corn stover but did not show lignin depolymerization. The sludge-treated lignin did show some reduction in molecular weight on the HPLC, particle size (350–650 nm initially to 135–220 nm by day 30) and particles per field on AFM. pH and the presence of nutrients had a substantial effect on the extent of depolymerization. Cultures in lignin and nutrients showed higher growth than cultures with lignin only. Colony characteristics within the beetle gut and the sludge were also evaluated.  相似文献   

13.
Several methods for the differential determination of lignin and of proteins solubilized together in the same solution are compared. It is shown that lignin is best determined by spectrophotometry at 280 nm, the absorptivity of the polymer being an order of magnitude greater than those of proteins. In contrast, a turbidimetric method applied to acid-precipitated lignin is strongly influenced by both the nature and the amounts of the proteins present in the mixture. Ninhydrin reagents permits the determination of proteins without interference from soluble lignin. Phenol and Coomassie Blue reagents react strongly with lignin, thus masking their interaction with proteins. The soluble lignin preparations used were solubilized from stake lignin in buffers adjusted to different pH values. They were analysed by exclusion chromatography and the results suggest that the lignin fragments obtained at higher pH are larger than those solubilized at lower pH. Turbidimetry showed that these larger soluble fragments form larger aggregates after acid precipitation.  相似文献   

14.
Expanders, as lignosulfonates, are crucial for a good performance of Pb/acid batteries. In the process of discharge, the Pb and the PbO2 go to PbSO4. The formed PbSO4 is adsorbed on the surface of the Pb electrode and dramatically reduces the lifetime of the battery by the formation of big PbSO4 crystals. In order to prevent that, the addition of expanders in the negative electrode is an economic solution to prevent the formation of big crystals. In this investigation, we propose the synthesis of several lignosulfonates obtained from lignin of many biomass origins. We have derivatized nine samples of lignin via microwave-assisted sulfonation, then we have characterized how efficient is the chosen synthesis method. The lignosulfonates obtained have been characterized by infrared spectroscopy (IR), proton nuclear magnetic resonance (1HNMR), two-dimensional correlated spectroscopy (COSY), and elemental analysis to acquire some relevant information about their structure in terms of functional groups. In this way, three commercial lignosulfonates, Vanisperse A, Indulin AT, and Oakwood, have been selected as references for our comparisons. Moreover, we have checked their electrochemical properties, using electrochemical techniques to compare their behavior with respect to the commercial lignosulfonates. Finally, we have selected one of them and we have tested its performance as an expander in a Pb/acid battery. That result is a very promising first approach, and we can conclude that lignosulfonates derivatives are a good and low-cost choice to improve the lifetime of Pb/acid batteries. In particular, it is shown that the incorporation of LignosB improves the cell formation as well as the first capacity (36.30% more) and the charge acceptance (63.16% more), being these relevant parameters in the performance of Pb/acid batteries.  相似文献   

15.
This short critical review gives an insight on the potential that lignin and its bio-oils present towards the production of thermosetting epoxy polymers and composites. Green and sustainable ways of producing monomers and polymers from renewable sources are critical and lignin, as an underutilized bio-based waste material, presents a high exploitation potential. Due to its versatile and highly functional phenolic structure, the utilization of lignin or its depolymerized fractions (bio-oils) has been investigated in the last years as alternative for fossil-based epoxy resin pre-polymers and crosslinkers. Lignin can in fact be considered as a crosslinker for epoxy resins, especially after appropriate functionalization with amine groups or with additional hydroxyl groups, or it can be modified with epoxide groups towards the replacement of toxic BPA-based epoxy prepolymers. Furthermore, lignin derived pyrolysis or hydrogenolysis bio-oils may offer highly reactive soluble oligomers that after appropriate functionalization could be utilized as bio-based epoxy prepolymers. The lignin-based epoxy resins and composites exhibit similar or even better and novel properties, compared to those of pristine epoxy polymers, thus rendering lignin a highly valuable feedstock for further utilization in the thermoset polymer industry.  相似文献   

16.
Stabilization effect of lignin in natural rubber   总被引:2,自引:0,他引:2  
A series of carbon black filled natural rubbers containing lignin was tested from the view point of their thermo-oxidative aging. Lignin is biopolymer that belongs to the main components of wood. Mechanical properties and crosslink density of lignin stabilized vulcanisates were measured before and after thermo-oxidative aging for 24, 72, 168, 240 and 408 h at 80 °C. The results were compared with those from NR vulcanisates stabilized with the commercial rubber antioxidant N-phenyl-N-isopropyl-p-phenylene diamine (IPPD). The results obtained show that lignin exerts a stabilizing effect in carbon black filled natural rubber. Its effect is comparable with that of conventional synthetic antioxidant. Moreover, the addition of lignin increased the stabilizing effect of IPPD.  相似文献   

17.
The lack of suitable lignin model compound limits the understanding of the characteristics of lignin, and hence hinders the efficient utilization of this kind of bioresource. A tetramer phenolic lignin model compound composed of 5-5, α-O-4 and β-5 linkages was prepared by a two-step of free radical reaction with hydrogen peroxide/horseradish peroxidase and S2O82- /Fe2+ as the initiator. Compared with enzymatic process, this synthetic process gives a higher yield of 33.8% within a shorter time. HRMS and 13C NMR spectroscopy show that synthesized model compound contains phenylpropane structure linked by 5-5, α-O-4 and β-5 bonds, which can mimic some chemical characteristics of lignin.  相似文献   

18.
Selective transformation of lignin into value-added chemicals is of strategic significance. Phenols, aldehydes, carboxylic acids, alkanes and arenes can be harvested from lignin with high selectivity under appropriate reaction condition.  相似文献   

19.
The influence of lignin on the thermal degradation of isotactic polypropylene, investigated by thermogravimetric analysis, is reported in this article. Polypropylene blends containing 5 and 15 wt% of lignin were prepared by mixing the components in a screw mixer. An increase in the thermal degradation temperature of the blends was observed as a function of lignin content, in both oxidative and non-oxidative conditions. The increase is noticeably marked for the experiments carried out in air atmosphere, where the interactions between the polypropylene and the lignin lead to the formation of a protective surface able to reduce the oxygen diffusion towards the polymer bulk. Morphological analyses were carried out with optical and electronic microscopy, to evaluate the degree of dispersion of the lignin in the polypropylene matrix. X-ray techniques were employed to study the influence of lignin on the structure of the blended polypropylene.  相似文献   

20.
The directional production of benzene is achieved by the current-enhanced catalytic conversion of lignin. The synergistic effect between catalyst and current promotes the depolymerization of lignin and the selective recombinant of the functional groups in the aromatic monomers. A high benzene yield of 175 gbenzene/kglignin was obtained with an excellent selectivity of 92.9 C-mol%. The process potentially provides a promising route for the production of basic petrochemical materials or high value-added chemicals using renewable biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号