首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A robust and effective composite film combined the benefits of Nafion, room temperature ionic liquid (RTIL) and multi‐wall carbon nanotubes (MWNTs) was prepared. Hemoglobin (Hb) was successfully immobilized on glassy carbon electrode surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Hb were investigated in detail. A pair of well‐defined and quasi‐reversible redox peaks of Hb was obtained in 0.10 mol·L?1 pH 7.0 phosphate buffer solution (PBS), indicating that the Nafion‐RTIL‐MWNTs film showed an obvious promotion for the direct electron transfer between Hb and the underlying electrode. The immobilized Hb exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0×10?6 to 2.5×10?4 mol·L?1, with a detection limit of 8.0×10?7 mol·L?1 (S/N=3). The apparent Michaelis‐Menten constant (Kmapp) was calculated to be 0.34 mmol·L?1. Moreover, the modified electrode displayed a good stability and reproducibility. Based on the composite film, a third‐generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

2.
Liu S  Ju H 《The Analyst》2003,128(12):1420-1424
A novel renewable reagentless nitrite biosensor based on the direct electron transfer of hemoglobin (Hb) and a new sensing mechanism was proposed by combining the advantageous features of colloidal gold nanoparticle and carbon paste technology. The direct electrochemistry of immobilized Hb displayed a pair of redox peaks with a formal potential of -42 mV (vs. NHE) in 0.2 mol dm(-3) NaAc-HAc buffer (pH 5.5). The immobilized Hb displayed an excellent response to the reduction of NO2(-) with one interfacial charge transfer followed by a chemical reaction (EC) mechanism. Under optimal conditions, the interfacial EC process could be used for the sensitive determination of NO2(-) with a linear range from 0.1 to 9.7 micromol dm(-3) and a detection limit of 0.06 [micro sign]mol dm(-3) at 3sigma. The amperometric determination of high concentrations of NO2(-) based on the irreversible reduction of NO could be performed at pH 4.0 with a linear range from 0.1 to 1.2 mmol dm(-3). The surface of biosensor could be renewed quickly and reproducibly by a simple polish step. The biosensor has been used satisfactorily for nitrite determination in native water samples.  相似文献   

3.
The high electrically conductive carboxyl‐functionalized multiwalled carbon nanotubes (COOH‐MWCNTs) were used to combine with nonconducting polyimide (PI) to generate a PI/COOH‐MWCNTs membrane. PI served as a matrix to entrap COOH‐MWCNTs and hemoglobin (Hb). COOH‐MWCNTs can improve the conductivity of the composite. The direct electrochemistry measurement indicated that the PI/COOH‐MWCNTs composite enhanced the immobilization of Hb significantly. Besides, the Hb/PI/COOH‐MWCNTs/GCE biosensor possessed excellent electrocatalytic activity for the detection of nitrite. Therefore, PI is a good matrix for Hb immobilization and it has application in sensor construction. This work is promising in the development of sensitive biosensors based on PI/COOH‐MWCNTs composite film.  相似文献   

4.
《Electroanalysis》2006,18(21):2085-2091
A nanocomposite electrochemical sensing film is assembled on choline (Ch) modified glassy carbon electrode (GCE), which contains multiwalled carbon nanotubes (MWNTs), Nafion cation exchanger, and myoglobin (Mb) or hemoglobin (Hb). The MWNTs provide a 3D porous and conductive network for the enzyme immobilization and Nafion acts as polymeric binder to give cast thin films. Both MWNTs and Nafion provide negative functionalities to bind to the positively charged redox proteins and to attach at the positively charged Ch modified layer, and drive the formation of homogeneous and stable nanocomposite film, the MWNT‐Nafion‐Mb. The nanocomposite film was characterized by field emission scanning electron microscope (FE‐SEM). The Mb in the nanocomposite film showed a pair of well‐defined and nearly reversible cyclic voltammetric peaks at about ?0.32 V vs. SCE at pH 7.0 solution for the heme Fe(III)/Fe(II) redox couple. The immobilized heme proteins can display the features of peroxidase in electrocatalytic reductions of oxygen, hydrogen peroxide, nitric oxide, trichloroacetic acid (TCA), and bromate.  相似文献   

5.
In recent years the direct electron transfer of redox protein on electrode surface has attracted great attentions1. Different kind of modified electrode and various supporting films for immobilization of proteins had been proposed. But most of them are ba…  相似文献   

6.
A novel nanohybrid material, constructed by gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWNTs), was designed for immobilization and biosensing of myoglobin (Mb). Morphology of the nanohybrid film was characterized by SEM. UV‐vis spectroscopy demonstrated that Mb on the composite film could retain its native structure. Direct electrochemistry of Mb immobilized on the GNPs/MWNTs film was investigated. The immobilized Mb showed a couple of quasireversible and well‐defined cyclic voltammetry peaks with a formal potential of about ?0.35 V (vs. Ag/AgCl) in pH 6.0 phosphate buffer solution (PBS) solution. Furthermore, the modified electrode also displayed good sensitivity, wide linear range and long‐term stability to the detection of hydrogen peroxide. The experiment results demonstrated that the hybrid matrix provided a biocompatible microenvironment for protein and supplied a necessary pathway for its direct electron transfer.  相似文献   

7.
A biocompatible nanocomposite film was fabricated for hemoglobin (Hb) molecules immobilization. This film consists of multiwalled carbon nanotubes (MWNTs), 1‐pyrenebutanoic acid, succinimidyl ester (PASE), hemoglobin (Hb) and Au nanoparticles (AuNPs). Herein, PASE molecules physically adsorbed onto MWNTs, and its groups then covalently bond with Hb. AuNPs were then linked with Hb/PASE/MWNTs via electrostatic adsorption force. UV‐visible adsorption spectra, Fourier transform infrared spectra, scanning electron microscope and electrochemical impedance spectroscopy have characterized the film. Cyclic voltammetry (CV) scans showed that in the film Hb has well‐defined redox reaction, with the formal potential (E°) at about ?0.27 V (vs. Ag/AgCl). Herein, differential pulse voltammetry (DPV) was employed to electrochemically detect the Hb in the film with a detection limit of 9.3×10?8 M. The proposed method was also succeeded for Hb detection in clinical blood samples. Furthermore, the Hb in the film showed good electrocatalytic activities to the reduction of H2O2, TCA, NaNO2 and O2.  相似文献   

8.
Immobilization of DNA on carbon nanotubes plays an important role in the development of new types of miniature DNA biosensors. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on the surfaces of multi-walled carbon nanotubes (MWNTs) have been investigated by cyclic voltammetry and electrochemical impedance analysis. The peak currents for Fe(CN)(6)(3-)/Fe(CN)(6)(4-) redox couple observed in the cyclic voltammograms decrease and the electron-transfer resistance (R(et)) obtained from the Nyquist plots increase due to the immobilization of DNA molecules (dsDNA or ssDNA) on the surfaces of MWNTs. Most of calf thymus DNA are covalently immobilized on MWNTs via diimide-activated amidation between the carboxylic acid groups on the carbon nanotubes and the amino groups on DNA bases, though the direct adsorption of the DNA molecules on MWNTs can be observed. Additionally, the interaction between DNA molecules immobilized on MWNTs and small biomolecules (ethidium bromide) can be observed obviously by cyclic voltammetry and electrochemical impedance analysis. This implies that the DNA molecules immobilized at the surface of MWNTs, with little structure change, still has the ability to interact with small biomolecules.  相似文献   

9.
An unmediated hydrogen peroxide (H2O2) biosensor was prepared by co‐immobilizing hemoglobin (Hb) with platinum nanoparticles enhanced poly(chloromethyl thiirane) cross‐linked chitosan (CCCS‐PNs) hybrid film. CCCS could provide a biocompatible microenvironment for Hb and PNs could accelerate the electron transfer between Hb and the electrode. Spectroscopic analysis indicated that the immobilized Hb could maintain its native structure in the CCCS‐PNs hybrid film. Entrapped Hb exhibited direct electrochemistry for its heme Fe(III)/Fe(II) redox couples at ?0.396 V in the CCCS‐PNs hybrid film, as well as peroxidase‐like activity to the reduction of hydrogen peroxide without the aid of an electron mediator.  相似文献   

10.
以多壁碳纳米管(MWNTs)修饰玻碳(GC)电极为基底,自组装金纳米粒子(AuNPs)及L-半胱氨酸(L-Cys)研制杂化膜修饰电极(L-Cys/AuNPs/MWNTs/GC).实验表明,该膜修饰电极在pH=7.0的KH2PO4-K2HPO4缓冲溶液中对细胞色素c(Cyt c)的直接电子转移反应具有良好的电催化作用,C...  相似文献   

11.
Hui Yao  Nan Li  Jun-Jie Zhu 《Talanta》2007,71(2):550-554
Direct electrochemical and electrocatalytic behavior of hemoglobin (Hb) immobilized on glass carbon electrode (GCE) containing gelatine (Gel) films was investigated. The characteristics of Hb/Gel film modified GC electrode were performed by using SEM microscopy, UV-vis spectroscopy and electrochemical methods. The immobilized Hb showed a couple of quasi-reversible redox peak with a formal potential of −0.38 V (versus SCE) in 0.1 M pH 7.0 PBS. The formal potential changed linearly from pH 4.03 to 8.41 with a slope value of −52.0 mV pH−1, which suggested that a proton transfer was accompanied with each electron transfer (ET) in the electrochemical reaction. The Hb/gelatine/GCE displayed a rapid amperometric response to the reduction of H2O2 and nitrite.  相似文献   

12.
A hybrid film is fabricated by casting hemoglobin (Hb)–carbon nanoparticles (CNPs)–polyvinyl alcohol (PVA) suspension on glassy carbon electrode (GCE). The resulting film shows a three-dimensional nanoporous structure. In the hybrid film, the ultraviolet visible (UV–Vis) absorption spectra of Hb keep almost unchanged. The organic–inorganic hybrid material can promote the direct electron transfer of Hb. A pair of well-defined and quasireversible peaks with a formal potential of −0.348 V (vs saturated calomel electrode) is obtained, which is caused by the electrochemical reaction of the Fe(III)/Fe(II) couple of Hb. The electron transfer rate constant (k s) is estimated to be 3.9 s−1. The immobilized Hb exhibits high stability and excellent electrochemical catalysis to the reduction of oxygen (O2), hydrogen peroxide (H2O2), and nitrite (). The catalytic currents are linear to the concentrations of H2O2 and from 1.96 to 112 μM and from 0.2 to 1.8 mM, respectively. Therefore, the hybrid film may be a good matrix for protein immobilization and biosensor fabrication.  相似文献   

13.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

14.
碳糊电极上无机膜固载血红蛋白的直接电化学   总被引:12,自引:0,他引:12  
报道了用硅溶胶-凝胶(Sol-gel)膜将血红蛋白(Hb)固载于碳糊电极上的直接电化学行为.研究结果表明,Hb-Sol-gel修饰的碳糊电极在pH=7.0的缓冲溶液中于-0.275V(vs.Ag/AgCl)处有一对可逆的循环伏安氧化-还原峰,为Hb血红素辅基Fe(Ⅲ)/Fe(Ⅱ)电对的特征峰.HbFe(Ⅲ)/Fe(Ⅱ)电对的式量电位在pH5.0~11.0范围内与溶液pH值呈线性关系,表明Hb的电化学还原很可能是一个质子伴随着一个电子的电极过程.FTIR光谱证实,Sol-gel膜对Hb的固载没有破坏其天然结构.Hb-Sol-gel修饰的碳糊电极能够催化还原H2O2,可望将其用于制作第三代生物传感器.  相似文献   

15.
The direct electron transfer and electrocatalysis of hemoglobin (Hb) entrapped in polyvinyl alcohol (PVA)–room temperature ionic liquid (i.e., 1-octyl-3-methylimidazolium hexafluorophosphate [OMIM]PF6) composition has been investigated by using cyclic voltammetry and chronocoulometry. It is found that the composition can promote the direct electron transfer of Hb and the heterogeneous electron transfer rate constant (ks) of immobilized Hb is enhanced to 19.9 s−1. The immobilized Hb also shows high electro-catalytic activity towards the redox of oxygen, hydrogen peroxide and nitrite. The Michaelis constants (Km) decrease to 1.2 × 10−4 M (for hydrogen peroxide) and 9.4 × 10−3 M (for nitrite). The surface concentration of electroactive Hb is estimated and it is ca. 1.4 × 10−10 mol cm−2, meaning that several layers of immobilized Hb take part in the electrochemical reaction. When gold nanoparticles (GNP) is introduced into the composition, the resulting PVA–GNP–[OMIM]PF6 composition presents better performance. The electrochemical characteristic of immobilized Hb is improved further. Thus PVA–GNP–[OMIM]PF6 composition is more suitable for the immobilization of Hb. Therefore, it is a good strategy to prepare novel composition for protein immobilization by using several materials with different function.  相似文献   

16.
Room temperature ionic liquid N-butylpyridinium hexafluorophosphate (BPPF6) was used as a binder to construct a new carbon ionic liquid electrode (CILE), which exhibited enhanced electrochemical behavior as compared with the traditional carbon paste electrode with paraffin. By using the CILE as the basal electrode, hemoglobin (Hb) was immobilized on the surface of the CILE with nano-CaCO3 and Nafion film step by step. The Hb molecule in the film kept its native structure and showed good electrochemical behavior. In pH 7.0 Britton-Robinson (B-R) buffer solution, a pair of well-defined, quasi-reversible cyclic voltammetric peaks appeared with cathodic and anodic peak potentials located at -0.444 and -0.285 V (vs SCE), respectively, and the formal potential (E degrees') was at -0.365 V, which was the characteristic of Hb Fe(III)/Fe(II) redox couples. The formal potential of Hb shifted linearly to the increase of buffer pH with a slope of -50.6 mV pH-1, indicating that one electron transferred was accompanied with one proton transportation. Ultraviolet-visible (UV-vis) and Fourier transform infrared (FT-IR) spectroscopy studies showed that Hb immobilized in the Nafion/nano-CaCO3 film still remained its native arrangement. The Hb modified electrode showed an excellent electrocatalytic behavior to the reduction of H2O2, trichloroacetic acid (TCA), and NaNO2.  相似文献   

17.
采用吸附和电化学聚合修饰方法,制得了聚亚甲基蓝-碳纳米管聚合膜玻碳电极(PMB-MWNTs/GCE),再将血红蛋白(Hb)固定在PMB-MwNTs/GCE表面,制备了稳定的Hb/PMB-MwNTs//GCE的H2O2生物传感器,并用循环伏安法对修饰电极的生物电催化行为进行了表征.研究结果表明,固定在PMB-MWNTs/...  相似文献   

18.
A polymer film based on polymeric ionic liquid, which was poly(1‐vinyl‐3‐butylimidazolium chloride) (poly(ViBuIm+Cl?)for short), was firstly used as matrix to immobilize hemoglobin (Hb). FTIR and UV‐vis spectra demonstrated that the native structure of Hb was well preserved after entrapped into the polymer film. The Hb immobilized in the poly(ViBuIm+Cl?) film showed a fast direct electron transfer for the Hb‐FeIII/FeII redox couple. Based on the direct electron transfer of the immobilized Hb, polyvinyl alcohol (PVA)/Hb/poly(ViBuIm+Cl?)/GC electrode displayed good sensitivity and wide linear range for the detection of H2O2. The linear range of the PVA/Hb/poly(ViBuIm+Cl?)/GC electrode to H2O2 is from 3.5 to 224 μM with a limit of detection of 1.17 μM. Such an avenue, which integrated polymeric ionic liquid and redox protein via a simple method, may provide a novel and efficient platform for the fabrication of biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

19.
Hemoglobin (Hb) was entrapped in a phosphatidylcholine (PC) film and immobilized at a pyrolytic graphite (PG) electrode surface. Its electron-transfer reactivity and enzyme activity were characterized by employing electrochemical methods. It was observed that Hb exhibited direct electrochemistry as well as enzyme-like activity towards the electrocatalytic reduction of NO in PC film. An unmediated, reagentless nitrogen oxide (NO) biosensor was accordingly prepared. Experimental results revealed that the peak current related to NO was linearly proportional to its concentration in the range of 1.0 x 10(-7)-3.0 x 10(-4) mol/L. The detection limit was estimated to be 1.0 x 10(-7) mol/L. Considering its good stability, nice selectivity and easy construction, this biosensor shows great promise for the rapid determination of traces of NO.  相似文献   

20.
用壳聚糖对多壁碳纳米管进行修饰,构建了一种用于固定血红蛋白的新型复合材料,并研究了血红蛋白在该碳纳米管上的电化学性质及其对过氧化氢的电催化活性.扫描电镜结果表明,壳聚糖修饰的多壁碳纳米管呈单一的纳米管状,并能均匀分散在玻碳电极表面.紫外光谱分析表明血红蛋白在该复合膜内能很好地保持其原有的二级结构.将该材料固定在玻碳电极上后,血红蛋白能成功地实现其直接电化学.根据峰电位差随着扫描的变化,计算得到血红蛋白在壳聚糖修饰的碳纳米管膜上的电荷转移系数为0.57,表观电子转移速率常数为7.02 s-1.同时,该电极对过氧化氢显示出良好的催化性能,电流响应信号与H2O2浓度在1.0×10-6 ~1.5×10-3 mol/L间呈线性关系,检出限为5.0×10-7 mol/L.修饰电极显示了良好的稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号