首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evaporation of sessile droplets placed on polymer surfaces was studied by microscopic observation of the changes in shape of aqueous solution droplets in which the alkyl lengths and the initial concentrations of sodium n-alkylates were varied. Although the initial contact angles of the droplets were not significantly different, the evaporation process varied significantly with the alkyl length of the sodium n-alkylate employed. For the sodium dodecanoate (C 12), showing the highest surface activity, the concentration was found to have a significant effect on the evaporation process of the droplets. In the evaporation of water droplets, variations in the three distinct stages were caused by the different concentration of solutes distributed near or at the air/water interface. It is revealed that the concentration of droplet solute near the air/water interface requires not only solvent evaporation but also some affinity of the solute for the interface. The initial C 12 concentration-dependence of the evaporation of C 12 solution droplets is discussed with particular emphasis on the sudden spreading or sudden contraction of the contact area near the end of evaporation. It is suggested that the cluster formation by C 12 molecules at the air/liquid interface during the evaporation causes Marangoni instability in an evaporating droplet, and the clusters are expected to move dynamically, depending on the droplet concentration of C 12, from the droplet center to the contact line and vice versa, showing Marangoni flow along the air/water interface.  相似文献   

2.
The evaporation of sessile drops at reduced pressure is investigated. The evaporation of water droplets on aluminum and PTFE surfaces at reduced pressure was compared. It was found that water droplets on an aluminum surface exhibit a 'depinning jump' at subatmospheric pressures. This is when a pinned droplet suddenly depins, with an increase in contact angle and a simultaneous decrease in the base width. The evaporation of sessile water droplets with a nonionic surfactant (Triton X-100) added to an aluminum surface was then studied. The initial contact angle exhibited a minimum at 0.001 wt% Triton X-100. A maximum in the evaporation rate was also observed at the same concentration. Droplets with low surfactant concentrations are found to exhibit the 'depinning jump.' It is thought that the local concentration of the surfactant causes a gradient of surface tension. The balance at the contact angle is dictated by complex phenomena, including surfactant diffusion and adsorption processes at interfaces. Due to the strong evaporation near the triple line, an accumulation of the surfactant will lead to a surface tension gradient along the interface. The gradient of surface tension will influence the wetting behavior (Marangoni effect). At low surfactant concentrations the contact line depins under the strong effect of surface tension gradient that develops spontaneously over the droplet interface due to surfactant accumulation near the triple line. The maximum evaporation rate corresponds to a minimum contact angle for a pinned droplet.  相似文献   

3.
Drying of DNA droplets   总被引:1,自引:0,他引:1  
The evaporation kinetics of droplets containing DNA was studied, as a function of DNA concentration. Drops containing very low DNA concentrations dried by maintaining a constant base, whereas those with high concentration dried with a constant contact angle. To understand this phenomenon, the distribution of the DNA inside the droplet was measured using confocal microscopy. The results indicated that the DNA was condensed mostly on the surface of the droplets. In the case of high concentration droplets, it formed a shell, whereas isolated islands were found for droplets of low DNA concentrations. Rheologic results indicate the formation of a hydro gel in the low concentration drops, whereas phase separation between the self-assembled DNA structures and the water phase occurred at higher concentration.  相似文献   

4.
The evaporation of sessile droplets with a constant base radius (pinning mode) and a constant contact angle (depinning mode) has been experimentally observed. Here we analyzed the effect of substrate hydrophobicity on the lifetimes of evaporating droplets for the two modes. Theoretical predictions were obtained and compared with available experimental results. The theoretical analysis and experimental results show that linear methods of extrapolating limited experimental data for a transient droplet contact angle and base radius overpredict the droplet lifetime. Likewise, the linear extrapolation of limited experimental data for transient droplet volume underpredicts the droplet lifetime. Correct methods of extrapolating limited experimental data for transient droplet parameters are described, discussed, and validated. The new methods removed inconsistencies in the previous theory and experimental analysis. Master equations and master curves for the droplet lifetime for the two evaporation modes are obtained and experimentally confirmed.  相似文献   

5.
Experiments of sessile water droplet evaporation on both polydimethylsiloxane (PDMS) and Teflon surfaces were conducted. All experiments begin with constant contact area mode (the initial contact angle is greater than 90°), switch to constant contact angle mode and end with mixed mode. Based on the assumptions of spherical droplet and uniform concentration gradient, theoretical analyses for both constant contact area and constant contact angle modes are made and theoretical solutions are derived accordingly, especially a theoretical solution of contact angle is presented first for CCR stage with any value of the initial contact angle. Moreover, comparisons between the theoretical solutions and experimental data of contact angle in CCR stage demonstrate the validity of the theoretical solution and it would help for a better understanding and application of water droplet on solid surfaces, which is quite often encountered in lab-on-a-chip, polymerase chain reaction (PCR) and other micro-fluidics devices.  相似文献   

6.
通过在线跟踪水滴在凹槽状聚二甲基硅氧烷(PDMS)基底上的挥发行为, 研究了蒸馏水的挥发规律Cassie-Wenzel转变行为. 结果表明, 初始阶段, 水滴处于Cassie状态, 且在垂直于凹槽方向(V)和平行于凹槽方向(P)上存在显著的各向异性. 水滴的挥发过程依次表现出接触直径不变模式、 接触角不变模式及共同减小模式, 与平滑基底上水滴的挥发规律类似. 在挥发过程中, 发生了Cassie-Wenzel转变, 转变发生的时间与PDMS基底上突起部分的面积分数(即固相率)呈现良好的线性关系. 随着挥发的进行, 水滴的各向异性在接触角不变模式阶段消失, 即挥发导致水滴从开始的椭球缺状变为球缺状.  相似文献   

7.
The mutual influence of two moderate-sized droplets of a dilute nonvolatile substance solution on the processes of their evaporation or condensation is theoretically analyzed under the assumption of a uniform concentration distribution inside the droplets. The conditions for the applicability of this approach are revealed. The evaporation or condensation of a droplet near a flat liquid surface is considered as a limiting case. The fluxes of water molecules to and from the surface of aqueous glycerol solution droplets occurring in air are numerically estimated depending on the droplet radii, distances between their surfaces, and air humidity. Analogous estimates are obtained for an aqueous glycerol solution droplet growing near a flat water surface.  相似文献   

8.
We present a simple method to produce carbon nanotube-based films with exceptional superhydrophobicity and impact icephobicity by depositing acetone-treated single-walled carbon nanotubes on glass substrates. This method is scalable and can be adopted for any substrate, both flexible and rigid. These films have indicated a high contact angle, in the vicinity of 170°, proved both by static and dynamic analysis processes. The dynamic evaporation studies indicated that a droplet deposited on the treated films evaporated in the constant contact angle mode for more than 80% of the total evaporation time, which is definitely a characteristic of superhydrophobic surfaces. Furthermore, the acetone-functionalized films showed a strong ability to mitigate ice accretion from supercooled water droplets (-8 °C), when the droplets were found to bounce off the films tilted at 30°. The untreated nanotube films did not indicate similar behavior, and the supercooled water droplets remained attached to the films' surfaces. Such studies could be the foundation of highly versatile technologies for both water and ice mitigation.  相似文献   

9.
Liquid droplets in equilibrium with vapor are simulated at solidlike surfaces using the cooperative motion algorithm (CMA). These droplets behave like real droplets, i.e., the densities of the coexistent liquid and vapor phases obey empirical relations such as rho l - rho v proportional, variant (1 - T/Tc)(1/3). Droplet evaporation was studied under various interaction conditions, i.e., nonsoluble and soluble substrates. In the last case, substrate particles migrate toward the liquid-vapor interface to minimize the droplet surface energy. This leads to the formation of a microwell surrounded by a ringlike deposit on the substrate surface. It is shown that the ring formation in the first stages of evaporation results in pinning of the droplet contact area.  相似文献   

10.
Several theories deal with the spreading kinetics of liquids on solid substrate, most of which relate the rate of spreading to the surface tension and the viscosity of the liquid. Measurements of the spreading of a number of liquids exhibiting a wide range of surface tension and viscosity on dry soda-lime glass have been carried out to validate the proposed models. The measurements used a small droplet of constant volume to minimize gravitational effects. The contact radius was acquired as a function of time by an image analysis system. It was noted that power law theories describe the spreading rate for silicone oil on glass. However, significant departures were noted in the case of other liquids. Mechanistic considerations of our data suggest that equal volume droplets of similar surface tension and of diverse viscosity spread to the same area but at different rates. On the other hand, the spreading rate of glycerine, which exhibits incomplete spreading on glass, and that of silicone oil, with comparable viscosity behave similarly. These observations seemingly support the view that surface tension acts to retain the spherical shape of the droplet, whereas the difference between the solid-liquid and solid-vapor interfacial energies acts to enlarge the contact area. In the meantime, viscous dissipation acts to retard the spreading rate, past a constant rate regime.  相似文献   

11.
A unique "non-evaporation" phenomenon, i.e., the unusually slow evaporation process of sessile microdroplets on self-assembled monolayer (SAM) surfaces, is reported. It has been observed that only droplets containing a certain proportion of a volatile and a less-volatile component undergo non-evaporation, which is characterized by hours-long existence of the droplets maintaining constant contact angle, contact area, and volume. We propose that for alcohol-water binary mixtures on SAM surfaces, the highly orientated and closely packed hydrophobic 1-decanethiol molecules induce a concentration gradient of alcohol in water, with a higher concentration of alcohol near the SAM surface. Initial evaporation of the alcohol (more volatile) increased the contact angle until the establishment of a new composition, which contains a strong hydrogen-bonding network among the water molecules in the presence of the alcohol alkyl chains. There is a lessened tendency for the alcohol to evaporate in the presence of a concentration gradient due to such interactions, which results in the observed "non-evaporating" phenomenon. This type of unusual evaporating profile was not observed on conventional substrates, such as polycarbonate sheets and microscope glass slides modified with alkyltrichlorosilanes.  相似文献   

12.
Results are reported for a study on the evaporation of water droplets from a highly viscoelastic acrylic polymer surface. These are contrasted with those collected for the same measurements carried out on polydimethylsiloxane (PDMS). For PDMS, the evaporation process involves the expected multistep process including constant drop area, constant contact angle, and finally a combination of these steps until the liquid is gone. In contrast, water evaporation from the acrylic polymer shows a constant drop area mode throughout. Furthermore, during the evaporation process, the drop area actually expands on the acrylic polymer. The single mode evaporation process is consistent with formation of wetting structures, which cannot be propagated by the capillary forces. Expansion of the drop area is attributed to the influence of the drop capillary pressure. Furthermore, the rate of drop area expansion is shown to be dependent on the thickness of the polymer film.  相似文献   

13.
Highly ordered poly(dimethylsiloxane) microbowl arrays (MBAs) and microcap arrays (MCAs) with "lock-and-key" properties are successfully fabricated by self-assembly and electrochemical deposition. The wetting properties and evaporation dynamics of water droplets for both cases have been investigated. For the MBAs case, the wetting radius of the droplets remains unchanged until the portion of the droplet completely dries out at the end of the evaporation process. The pinning state extends for more than 99.5% of the total evaporation time, and the pinning-shrinking transition is essentially prevented whereas in the case of the MCAs the contact radius exhibits distinct stages during evaporation and the contact line retreats significantly in the middle of the evaporation process. We explain the phenomenon by a qualitative energy balance argument based on the different shrinkage types of the nanoscale-folded contact line.  相似文献   

14.
The influence of droplet orientation on the flow directed organization of nanoparticles in evaporating nanofluid droplets is important for the efficiency of foliar applied fertilizers and contamination adhesion to the exterior of buildings. The so called "coffee ring" deposit resulting from the evaporation of a sessile nanofluid drop on a hydrophilic surface has received much attention in the literature. Deposits forming on hydrophobic surfaces in the pendant drop position (i.e. hanging drop), which are of importance in foliar fertilizer and exterior building contamination, have received much less attention. In this study, the deposit patterns resulting from the evaporation of water droplets containing silica nanoparticles on hydrophobic surfaces orientated in the sessile or pendant configuration are compared. In the case of a sessile drop the well known coffee ring pattern surrounding a thin nanoparticle layer was formed. A deposit consisting of a thin coffee ring surrounding a bump was formed in the pendant position. A mechanism involving flow induced aggregation at the droplet waist, settling, orientation dependant accumulation within the drop and pinning of the contact line is suggested to explain the findings. Differences in the contact area and adhesion of deposits with surface orientation will affect the efficiency and rainfastness of foliar fertilizers and the cleanliness of building exteriors.  相似文献   

15.
Analysis of droplet evaporation on a superhydrophobic surface   总被引:1,自引:0,他引:1  
The evaporation process for small, 1-2-mm-diameter droplets of water from patterned polymer surfaces is followed and characterized. The surfaces consist of circular pillars (5-15 microm diameter) of SU-8 photoresist arranged in square lattice patterns such that the center-to-center separation between pillars is 20-30 microm. These types of surface provide superhydrophobic systems with theoretical initial Cassie-Baxter contact angles for water droplets of up to 140-167 degrees, which are significantly larger than can be achieved by smooth hydrophobic surfaces. Experiments show that on these SU-8 textured surfaces water droplets initially evaporate in a pinned contact line mode, before the contact line recedes in a stepwise fashion jumping from pillar to pillar. Provided the droplets of water are deposited without too much pressure from the needle, the initial state appears to correspond to a Cassie-Baxter one with the droplet sitting upon the tops of the pillars. In some cases, but not all, a collapse of the droplet into the pillar structure occurs abruptly. For these collapsed droplets, further evaporation occurs with a completely pinned contact area consistent with a Wenzel-type state. It is shown that a simple quantitative analysis based on the diffusion of water vapor into the surrounding atmosphere can be performed, and estimates of the product of the diffusion coefficient and the concentration difference (saturation minus ambient) are obtained.  相似文献   

16.
"Snowmanlike" polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles were prepared by evaporation of toluene from PS/PMMA/toluene droplets dispersed in an aqueous solution of polyoxyethylene nonylphenyl ether surfactant (Emulgen 911). Partitioning experiments revealed that the Emulgen 911 concentration was higher in the droplets than in the aqueous solution during toluene evaporation. As a consequence, the interfacial tensions between the polymer phases (PS and PMMA) and the aqueous phase (gammaP-T/W) were extraordinarily low (approximately 10(-1) mN/m). The interfacial tension between the PS and PMMA phases containing toluene (gammaPS-T/PMMA-T) measured by the spinning drop method was not affected by the presence of Emulgen 911. Based on minimization of the total interfacial free energy at a polymer weight fraction in the toluene droplet of 0.17, the formation of spherical droplets is expected, in agreement with experiment. The subsequent morphology change of the PS/PMMA/toluene droplets from spherical to snowmanlike during toluene evaporation under thermodynamic equilibrium is attributed to (i) the low values of gammaP-T/W, which explains the increase in the interfacial area between the droplets and the aqueous phase, and (ii) the increase in gammaPS-T/PMMA-T with increasing polymer weight fraction.  相似文献   

17.
Experiments have been performed on the formation of ding-shaped deposits upon the evaporation of dispersion droplets on different substrates accompanied by the coffee ring effect. The main attention has been focused on studying the structure of a formed deposit as depending on the initial contact angle of a droplet. It has been established that the deposit structure may vary from ring-shaped to disc-shaped with a decrease in the contact angle. For certain systems, as the initial contact angle is varied, the scenario of droplet evaporation may change and, in some cases, acquire a combined character. Before the onset of pinning, menisci of droplets that are evaporated on modified polymer substrates may initially move not only toward the droplet center, but also in the opposite direction.  相似文献   

18.
The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1–2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been derived theoretically and confirmed experimentally. The theory developed for pure liquids is applicable also to nanofluids, where a good agreement with the available experimental data has been found. However, in the case of evaporation of surfactant solutions the process deviates from the theoretical predictions for pure liquids at concentration below critical wetting concentration and is in agreement with the theoretical predictions at concentrations above it.  相似文献   

19.
We study the effects of Marangoni stresses on the flow in an evaporating sessile droplet, by extending a lubrication analysis and a finite element solution of the flow field in a drying droplet, developed earlier. The temperature distribution within the droplet is obtained from a solution of Laplace's equation, where quasi-steadiness and neglect of convection terms in the heat equation can be justified for small, slowly evaporating droplets. The evaporation flux and temperature profiles along the droplet surface are approximated by simple analytical forms and used as boundary conditions to obtain an axisymmetric analytical flow field from the lubrication theory for relatively flat droplets. A finite element algorithm is also developed to solve simultaneously the vapor concentration, and the thermal and flow fields in the droplet, which shows that the lubrication solution with the Marangoni stress is accurate for contact angles as high as 40 degrees. From our analysis, we find that surfactant contamination, at a surface concentration as small as 300 molecules/microm(2), can almost entirely suppress the Marangoni flow in the evaporating droplet.  相似文献   

20.
Wetting, evaporative, and pinning strength properties of hydrophilic sites on superhydrophobic, nanostructured surfaces were examined. Understanding these properties is important for surface characterization and designing features in self-cleaning, lotus-leaf-like surfaces. Laser-ablated, hydrophilic spots between 250 mum and 2 mm in diameter were prepared on silicon nanowire (NW) superhydrophobic surfaces. For larger circumference pinning sites, initial contact angle measurements resemble the contact angle of the surface within the pinning site: 65-69 degrees . As the drop volume is increased, the contact angles approach the contact angle of the NW surface without pinning sites: 171-176 degrees . The behavior of water droplets on the pinning sites is governed by how much of the water droplet is being influenced by the superhydrophobic NW surfaces versus the hydrophilic areas. During the evaporation of sinapic acid solution, drops are pinned by the spots except for the smaller circumference sites. Pinning strengths of the hydrophilic sites are a linear function of the pinning spot circumference. Protein samples prepared and deposited on the pinning sites for analysis by matrix-assisted laser desorption ionization indicate an improvement in sensitivity from that of a standard plate analysis by a factor of 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号