首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Researchers in the social sciences currently employ a variety of mathematical/computational models for studying complex systems. Despite the diversity of these models, the majority can be grouped into one of three types: agent (rule-based) modeling, dynamical (equation-based) modeling and statistical (aggregate-based) modeling. The purpose of the current paper is to offer a fourth type: case-based modeling. To do so, we review the SACS Toolkit: a new method for quantitatively modeling complex social systems, based on a case-based, computational approach to data analysis. The SACS Toolkit is comprised of three main components: a theoretical blueprint of the major components of a complex system (social complexity theory); a set of case-based instructions for modeling complex systems from the ground up (assemblage); and a recommended list of case-friendly computational modeling techniques (case-based toolset). Developed as a variation on Byrne (in Sage Handbook of Case-Based Methods, pp.?260?C268, 2009), the SACS Toolkit models a complex system as a set of k-dimensional vectors (cases), which it compares and contrasts, and then condenses and clusters to create a low-dimensional model (map) of a complex system??s structure and dynamics over time/space. The assembled nature of the SACS Toolkit is its primary strength. While grounded in a defined mathematical framework, the SACS Toolkit is methodologically open-ended and therefore adaptable and amenable, allowing researchers to employ and bring together a wide variety of modeling techniques. Researchers can even develop and modify the SACS Toolkit for their own purposes. The other strength of the SACS Toolkit, which makes it a very effective technique for modeling large databases, is its ability to compress data matrices while preserving the most important aspects of a complex system??s structure and dynamics across time/space. To date, while the SACS Toolkit has been used to study several topics, a mathematical outline of its case-based approach to quantitative analysis (along with a case study) has yet to be written?Chence the purpose of the current paper.  相似文献   

2.
3.
Traditional mathematics assessments often fail to identify students who can powerfully and effectively apply mathematics to real-world problems, and many students who excel on traditional assessments often struggle to implement their mathematical knowledge in real-world settings (Lesh & Sriraman, 2005a). This study employs multi-tier design-based research methodologies to explore this phenomenon from a models and modeling perspective. At the researcher level, a Model Eliciting Activity MEA) was developed as a means to measure student performance on a complex real-world task. Student performance data on this activity and on traditional pre- and post-tests were collected from approximately 200 students enrolled in a second semester calculus course in the Science and Engineering department of the University of Southern Denmark during the winter of 2005. The researchers then used the student solutions to the MEA to develop tools for capturing and assessing the strengths and weaknesses of the mathematical models present in these solutions. Performance on the MEA, pre- and post-test were then analyzed both quantitatively and qualitatively to identify trends in the subgroups corresponding to those described by lesh and Sriraman.  相似文献   

4.
5.
In Indiscrete Thoughts [18], G.-C. Rota remarked, ??The mystery, as well as the glory of mathematics, lies not so much in the fact that abstract theories do turn out to be useful in solving problems, but, wonder of wonders, in the fact that a theory meant for one type of problem is often the only way of solving problems of entirely different kinds, problems for which the theory was not intended. These coincidences occur so frequently, that they must belong to the essence of mathematics.?? Indeed, it happens often that abstract mathematics leads to concrete applications, and real-life problems constitute a source of inspiration for sophisticated theories. The strong synergy between pure mathematics and its applications advocates for teaching methods that intertwine physical intuition with mathematical abstraction, and recognize the universality of mathematical laws throughout the sciences.  相似文献   

6.
近似Bayes计算前沿研究进展及应用   总被引:1,自引:1,他引:0       下载免费PDF全文
在大数据和人工智能时代,建立能够有效处理复杂数据的模型和算法,以从数据中获取有用的信息和知识是应用数学、统计学和计算机科学面临的共同难题.为复杂数据建立生成模型并依据这些模型进行分析和推断是解决上述难题的一种有效手段.从一种宏观的视角来看,无论是应用数学中常用的微分方程和动力系统,或是统计学中表现为概率分布的统计模型,还是机器学习领域兴起的生成对抗网络和变分自编码器,都可以看作是一种广义的生成模型.随着所处理的数据规模越来越大,结构越来越复杂,在实际问题中所需要的生成模型也变得也越来越复杂,对这些生成模型的数学结构进行精确地解析刻画变得越来越困难.如何对没有精确解析形式(或其解析形式的精确计算非常困难)的生成模型进行有效的分析和推断,逐渐成为一个十分重要的问题.起源于Bayes统计推断,近似Bayes计算是一种可以免于计算似然函数的统计推断技术,近年来在复杂统计模型和生成模型的分析和推断中发挥了重要作用.该文从经典的近似Bayes计算方法出发,对近似Bayes计算方法的前沿研究进展进行了系统的综述,并对近似Bayes计算方法在复杂数据处理中的应用前景及其和前沿人工智能方法的深刻联系进行了分析和讨论.  相似文献   

7.
Gila Hanna  Ed Barbeau 《ZDM》2008,40(3):345-353
Yehuda Rav’s inspiring paper “Why do we prove theorems?” published in Philosophia Mathematica (1999, 7, pp. 5–41) has interesting implications for mathematics education. We examine Rav’s central ideas on proof—that proofs convey important elements of mathematics such as strategies and methods, that it is “proofs rather than theorems that are the bearers of mathematical knowledge”and thus that proofs should be the primary focus of mathematical interestand then discuss their significance for mathematics education in general and for the teaching of proof in particular.  相似文献   

8.
ABSTRACT

This article argues that mathematical knowledge, and its related pedagogy, is inextricably linked to the tools in which the knowledge is expressed. The focus is on digital tools and the different roles they play in shaping mathematical meanings and in transforming the mathematical practices of learners and teachers. Six categories of digital tool-use that distinguish their differing potential are presented: (1) dynamic and graphical tools; (2) tools that outsource processing power; (3) tools that offer new representational infrastructures for mathematics; (4) tools that help to bridge the gap between school mathematics and the students’ world; (5) tools that exploit high-bandwidth connectivity to support mathematics learning; and (6) tools that offer intelligent support for the teacher when their students engage in exploratory learning with digital technologies. Following exemplification of each category, the article ends with some reflections on the progress of research in this area and identifies some remaining challenges.  相似文献   

9.
Matti Heiliö 《PAMM》2007,7(1):1170401-1170402
The cutting edge knowledge in the art of mathematical technology is located in dispersed nodes, research groups on applied mathematics, mathematical physics, scientific computing etc. The work often leads to development of software representing state-of-the-art methods in the field. These environments are often experimental, under revisions, near the laboratory floor of on-going research. This stage sometimes precedes the later development to actual products and commercialization. Web-technologies are a viable media for innovative processes and knowledge transfer. In this article I draw attention to the possibility of creating added value for the knowledge repository of applied mathematics and computational methods via remote access software sharing. I present examples and refer to the obvious potential of this approach in the modern era of grid computing. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The issues involved in teaching English language learners mathematics while they are learning English pose many challenges for mathematics teachers and highlight the need to focus on language-processing issues related to teaching mathematical content. Two realistic-type problems from high-stakes tests are used to illustrate the complex interactions between culture, language, and mathematical learning. The analyses focus on aspects of the problems that potentially increase cognitive demands for second-language learners. An analytical framework is presented that is designed to enable mathematics teachers to identify critical elements in problems and the learning environment that contribute to increased cognitive demands for students of English as a second language. The framework is proposed as a cycle of teacher reflection that would extend a constructivist model of teaching to include broader linguistic, cultural, and cognitive processing issues of mathematics teaching, as well as enable teachers to develop more accurate mental models of student learning.  相似文献   

11.
The issues involved in teaching English language learners mathematics while they are learning English pose many challenges for mathematics teachers and highlight the need to focus on language-processing issues related to teaching mathematical content. Two realistic-type problems from high-stakes tests are used to illustrate the complex interactions between culture, language, and mathematical learning. The analyses focus on aspects of the problems that potentially increase cognitive demands for second-language learners. An analytical framework is presented that is designed to enable mathematics teachers to identify critical elements in problems and the learning environment that contribute to increased cognitive demands for students of English as a second language. The framework is proposed as a cycle of teacher reflection that would extend a constructivist model of teaching to include broader linguistic, cultural, and cognitive processing issues of mathematics teaching, as well as enable teachers to develop more accurate mental models of student learning.  相似文献   

12.
This article presents a teaching experiment on the relationship between informal out-of-school and formal in-school mathematics, and the ways each can inform the other in the development of abstract mathematical knowledge. This study concerns the understanding of some aspects of the multiplicative structure of decimal numbers. It involved a series of classroom activities in upper elementary school, using suitable cultural artifacts and interactive teaching methods. To create a substantially modified teaching/learning environment, new sociomathematical norms (Yackel & Cobb, 1996) were also introduced. The focus was on fostering a mindful approach toward realistic mathematical modeling, which is both real-world based and quantitatively constrained sense-making (Reusser & Stebler, 1997). In addition, procedures not commonly used in ordinary teaching activities, such as estimation and approximation processes, were also introduced.  相似文献   

13.
This article presents a teaching experiment on the relationship between informal out-of-school and formal in-school mathematics, and the ways each can inform the other in the development of abstract mathematical knowledge. This study concerns the understanding of some aspects of the multiplicative structure of decimal numbers. It involved a series of classroom activities in upper elementary school, using suitable cultural artifacts and interactive teaching methods. To create a substantially modified teaching/learning environment, new sociomathematical norms (Yackel &; Cobb, 1996) were also introduced. The focus was on fostering a mindful approach toward realistic mathematical modeling, which is both real-world based and quantitatively constrained sense-making (Reusser &; Stebler, 1997). In addition, procedures not commonly used in ordinary teaching activities, such as estimation and approximation processes, were also introduced.  相似文献   

14.
Stephen Lerman 《ZDM》2013,45(4):623-631
Whilst research on the teaching of mathematics and the preparation of teachers of mathematics has been of major concern in our field for some decades, one can see a proliferation of such studies and of theories in relation to that work in recent years. This article is a reaction to the other papers in this special issue but I attempt, at the same time, to offer a different perspective. I examine first the theories of learning that are either explicitly or implicitly presented, noting the need for such theories in relation to teacher learning, separating them into: socio-cultural theories; Piagetian theory; and learning from practice. I go on to discuss the role of social and individual perspectives in authors’ approach. In the final section I consider the nature of the knowledge labelled as mathematical knowledge for teaching (MKT). I suggest that there is an implied telos about ‘good teaching’ in much of our research and that perhaps the challenge is to study what happens in practice and offer multiple stories of that practice in the spirit of “wild profusion” (Lather in Getting lost: Feminist efforts towards a double(d) science. SUNY Press, New York, 2007).  相似文献   

15.
Helen M. Doerr Prof. 《ZDM》2006,38(3):255-268
In this paper, I present the results of a case study of the practices of four experienced secondary teachers as they engaged their students in the initial development of mathematical models for exponential growth. The study focuses on two related aspects of their practices: (a) when, how and to what extent they saw and interpreted students' ways of thinking about exponential functions and (b) how they responded to the students' thinking in their classroom practice. Through an analysis of the teachers' actions in the classroom, I describe the teachers' developing knowledge when using modeling tasks with secondary students. The analysis suggests that there is considerable variation in the approaches that teachers take in listening to and responding to students' emerging mathematical models. Having a well-developed schema for how students might approach the task enabled one teacher to press students to express, evaluate, and revise their emerging models of exponential growth. Implications for the knowledge needed to teach mathematics through modeling are discussed.  相似文献   

16.
Of the four subjects in an integrated science, technology, engineering, and mathematics (STEM) approach, mathematics has not received enough focus. This could be in part because mathematics teachers may be apprehensive or unsure about how to implement integrated STEM education in their classrooms. There are benefits to integrated STEM in a mathematics classroom though, including increased motivation, interest, and achievement for students. This article discusses three methods that middle school mathematics teachers can utilize to integrate STEM subjects. By focusing on open‐ended problems through engineering design challenges, mathematical modeling, and mathematics integrated with technology middle school students are more likely to see mathematics as relevant and valuable. Important considerations are discussed as well as recent research with these approaches.  相似文献   

17.
Effective competition in a rapidly growing global economy places demands on a society to produce individuals capable of higher‐order critical thinking, creative problem solving, connection making, and innovation. We must look to our teacher education programs to help prospective middle grades teachers build the mathematical habits of mind that promote a conceptually indexed, broad‐based foundation of mathematics knowledge for teaching which encompasses the establishment and strengthening of mathematical connections. The purpose of this concurrent exploratory mixed methods study was to examine prospective middle grades teachers' mathematics knowledge for teaching geometry and the connections made while completing open and closed card sort tasks meant to probe mathematical connections. Although prospective middle grades teachers' mathematics knowledge for teaching geometry was below average, they were able to make over 280 mathematical connections during the card sort tasks. Curricular connections made had a statistically significant positive impact on mathematics knowledge for teaching geometry.  相似文献   

18.
Roland W. Scholz 《ZDM》2007,39(1-2):51-61
In the 1950s, game and decision theoretic modeling emerged—based on applications in the social sciences—both as a domain of mathematics and interdisciplinary fields. Mathematics educators, such as Hans Georg Steiner, utilized game theoretical modeling to demonstrate processes of mathematization of real world situations that required only elementary intuitive understanding of sets and operations. When dealing with n-person games or voting bodies, even students of the 11th and 12th grade became involved in what Steiner called the evolution of mathematics from situations, building of mathematical models of given realities, mathematization, local organization and axiomatization. Thus, the students could participate in processes of epistemological evolutions in the small scale. This paper introduces and discusses the epistemological, cognitive and didactical aspects of the process and the roles these activities can play in the learning and understanding of mathematics and mathematical modeling. It is suggested that a project oriented study of game and decision theory can develop situational literacy, which can be of interest for both mathematics education and general education.  相似文献   

19.
To meet the challenge to reform mathematics education, effective opportunities to learn are needed to promote prospective elementary school teachers' development of the knowledge base that supports teaching for mathematical proficiency. This article describes three professional development interventions and their influence on prospective teachers' beliefs about mathematics, how children learn mathematics, and mathematics teaching. The three interventions consisted of problem‐solving journals, structured interviews, and peer teaching that were integrated in a PreK‐6 mathematics methods course. Results of precourse and postcourse survey data are included that measured 24 prospective teachers' beliefs about the knowledge base needed to teach elementary school mathematics. Data indicated that using these interventions and other course experiences facilitated change in the prospective teachers' beliefs, with a shift toward reform‐oriented mathematics education perspectives.  相似文献   

20.
While many engineering educators have proposed changes to theway that mathematics is taught to engineers, the focus has oftenbeen on mathematical content knowledge. Work from the mathematicseducation community suggests that it may be beneficial to considera broader notion of mathematics: mathematical thinking. Schoenfeldidentifies five aspects of mathematical thinking: the mathematicscontent knowledge we want engineering students to learn as wellas problem-solving strategies, use of resources, attitudes andpractices. If we further consider the social and material resourcesavailable to students and the mathematical practices studentsengage in, we have a more complete understanding of the breadthof mathematics and mathematical thinking necessary for engineeringpractice. This article further discusses each of these aspectsof mathematical thinking and offers examples of mathematicalthinking practices based in the authors' previous empiricalstudies of engineering students' and practitioners' uses ofmathematics. The article also offers insights to inform theteaching of mathematics to engineering students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号