首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of arsenic adsorption using iron(III) loaded chelating resin as adsorbent is presented. The experiments were carried out in batch mode by using aqueous solutions containing 1000 ppm As, and using an iron(III) loaded iminodiacetate resin (LEWATIT TP 207) with sorption capacity of 168 mg Fe/g resin. The equilibrium time for adsorption was found to be one hour under the experimental conditions used. The influence of pH was studied in the range of 0.8÷8.5. The highest arsenic adsorption was found at pH 1.7. Under these conditions the adsorption capacity for As was approximately 60 mg As/g resin.  相似文献   

2.
Abstract—Iron nanoparticles are obtained by reducing iron(III) chloride with sodium borohydride in aqueous solutions at room temperature without using stabilizing agents. The obtained samples are characterized by X-ray diffraction analysis, low-temperature adsorption of argon, and transmission electron microscopy. The effect of the concentration of reagent solutions, the molar ratio of reagents, and exposure to ultrasound and inert atmosphere (Ar) on the size and composition of the resulting particles is found. Depending on the conditions of borohydride reduction of iron salts in an aqueous solution, both agglomerates of iron nanoparticles (5–50 nm) of 200 nm or larger and individual iron nanoparticles of 1 to 20 nm in size can be obtained. The presence and concentration of wustite and magnetite in the composition of the obtained particles mainly depend on the concentration of the reducing agent.  相似文献   

3.
The electrochemical behavior of the iron(III)/iron(II) couple was investigated in both complexing (Cl) and noncomplexing (ClO4) media in dimethylformamide (DMF), and the results were compared with the results obtained in aqueous solutions. The diffusion coefficients for iron(III) and iron(II) in DMF are larger in complexing medium than in noncomplexing medium, contrary to the results obtained in aqueous solutions. The heterogeneous electron transfer rate constants for the iron(III)/iron(II) couple obtained in DMF were found to be smaller in DMF solution as a result of the specific adsorption of DMF. The formal potential of the Fe(III)/Fe(II) couple in DMF is about 0.2 V less positive in noncomplexing medium as a result of the greater stabilization of iron(III) by the strongly cation-solvating DMF. The formal potential of the same couple in complexing medium (Cl) was found to be 0.5 V less positive due to a combination of solvation and complexation effects. Cyclic voltammetric investigations show a quasi-reversible electron transfer without any coupled chemical reaction.  相似文献   

4.
Adsorption of Cr(VI) on Fe2O3 from model solutions with various Cr(VI) concentrations was studied. The adsorption capacity was determined, the constants of chromium(VI) adsorption on iron(III) oxide for the pseudo-second-order model were calculated, and the diffusion coefficients for the process were evaluated.  相似文献   

5.
The mechanisms of adsorption of iron(II) ion, iron(III) ion, and reduced iron(III) ion onto an activated carbon fiber and the ability of carbon fibers to reduce iron(III) ion were investigated on the basis of the amounts of iron ion adsorbed. The amount of iron(II) ion adsorbed onto the activated carbon fiber increased with increasing adsorption temperature. Iron(II) ion was more easily removed by the activated carbon fiber than iron(III) ion. Iron(III) ion was adsorbed onto the activated carbon fiber after being reduced to iron(II) ion. The reduction ability of A-20 was stronger than that of A-10 because the hydrophilic groups of A-20 were larger than those of A-10. It is concluded that the activated carbon fiber has a reduction effect on iron(III) ion and that the reduction effect of the activated carbon fiber depended on the number of hydrophilic groups on the activated carbon fiber. Copyright 2000 Academic Press.  相似文献   

6.

The reactions of ciprofloxacin (CIP) and norfloxacin (NOR) with iron(II) and iron(III) perchlorate have been investigated. The optical spectra support the formation of four complexes for each oxidation state with 1 : 1, 1 : 2, 1 : 3 and 1 : 4 metal to ligand molar ratios. The electrical conductivity and magnetic susceptibility measurements show that the isolated complexes are high spin and the Fe(ClO 4 ) 2 and Fe(ClO 4 ) 3 complexes behave as 1 : 2 and 1 : 3 electrolytes, respectively. The IR spectra indicate that CIP and NOR bind to the iron ion as bidentate ligands through the carbonyl oxygen atom and one of the oxygen atoms of the carboxylate group.  相似文献   

7.
《Analytical letters》2012,45(18):2939-2949
An electrochemical immunosensor for microcystin-(leucine-arginine) based on magnetic bionanoparticles and iron(II, III) oxide was developed. The bionanoparticles were prepared by cross-linking antibodies of microcystin-(leucine-arginine) and amino-functionalized magnetic iron(II, III) oxide nanoparticles with glutaraldehyde, followed by immobilization on the surface of a magnetic electrode. The immunosensor was based on the model of direct competition, as microcystin-(leucine-arginine) and horseradish peroxidase-conjugated microcystin-(leucine-arginine) competitively combined with immobilizing antibodies. The peak current of differential pulse voltammetry (DPV) decreased with an increase of microcystin-(leucine-arginine) concentration after antigen-antibody reaction. When the background current was stabilized, the anodic peak current response and change in peak response were recorded. Under the optimized conditions, the change in response was proportional to the microcystin-(leucine-arginine) concentration between 0.010 and 100 µg/L with a limit of detection equal to 0.009 µg/L. Amperometry was adopted to determine microcystin-(leucine-arginine); the linear dynamic range was 0.10 to 100 µg/L with a detection limit of 0.08 µg/L. The method was successfully applied in the determination of microcystin-(leucine-arginine) in river water and the recoveries were between 90.2% and 110.5%.  相似文献   

8.
The sorption of small amounts of europium(III) on iron(III) hydroxide and oxide has been studied as a function of pH. The mechanism of sorption is discussed. Optimum conditions have been found for the preconcentration of small or trace amounts of europium(III) by iron(III) hydroxide and oxide. The influence of complexing agents (EDTA, oxalate, tartrate and 5-sulfosalicylic acid) on the sorption of small amounts of europium(III) on iron(III) oxide has also been studied.  相似文献   

9.

The polymer supported transition metal complexes of N,N′‐bis (o‐hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by immobilization of N,N′‐bis(4‐amino‐o‐hydroxyacetophenone)hydrazine (AHPHZ) Schiff base on chloromethylated polystyrene beads of a constant degree of crosslinking and then loading iron(III), cobalt(II) and nickel(II) ions in methanol. The complexation of polymer anchored HPHZ Schiff base with iron(III), cobalt(II) and nickel(II) ions was 83.30%, 84.20% and 87.80%, respectively, whereas with unsupported HPHZ Schiff base, the complexation of these metal ions was 80.3%, 79.90% and 85.63%. The unsupported and polymer supported metal complexes were characterized for their structures using I.R, UV and elemental analysis. The iron(III) complexes of HPHZ Schiff base were octahedral in geometry, whereas cobalt(II) and nickel(II) complexes showed square planar structures as supported by UV and magnetic measurements. The thermogravimetric analysis (TGA) of HPHZ Schiff base and its metal complexes was used to analyze the variation in thermal stability of HPHZ Schiff base on complexation with metal ions. The HPHZ Schiff base showed a weight loss of 58% at 500°C, but its iron(III), cobalt(II) and nickel(II) ions complexes have shown a weight loss of 30%, 52% and 45% at same temperature. The catalytic activity of metal complexes was tested by studying the oxidation of phenol and epoxidation of cyclohexene in presence of hydrogen peroxide as an oxidant. The supported HPHZ Schiff base complexes of iron(III) ions showed 64.0% conversion for phenol and 81.3% conversion for cyclohexene at a molar ratio of 1∶1∶1 of substrate to catalyst and hydrogen peroxide, but unsupported complexes of iron(III) ions showed 55.5% conversion for phenol and 66.4% conversion for cyclohexene at 1∶1∶1 molar ratio of substrate to catalyst and hydrogen peroxide. The product selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was 90.5% and 96.5% with supported HPHZ Schiff base complexes of iron(III) ions, but was found to be low with cobalt(II) and nickel(II) ions complexes of Schiff base. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) was different with studied metal ions and varied with molar ratio of metal ions in the reaction mixture. The selectivity was constant on varying the molar ratio of hydrogen peroxide and substrate. The energy of activation for epoxidation of cyclohexene and phenol conversion in presence of polymer supported HPHZ Schiff base complexes of iron(III) ions was 8.9 kJ mol?1 and 22.8 kJ mol?1, respectively, but was high with Schiff base complexes of cobalt(II) and nickel(II) ions and with unsupported Schiff base complexes.  相似文献   

10.
《Electroanalysis》2006,18(18):1757-1762
Composite electrodes based on iron(III) oxide, Fe2O3, carbon powder and epoxy resin have been prepared and characterized using electrochemical methods and X‐ray photoelectron spectroscopy (XPS). Initially composite electrodes were made by mixing micron sized carbon powder surface with iron(III) oxide. However, the voltammetric responses were unsatisfactory. Therefore, a new type of composite electrodes was made using carbon powder modified with iron(III) oxide via a wet impregnation procedure. This technique involves saturation of the carbon powder with iron(III) nitrate followed by thermal treatment at ca. 623 K forming iron(III) oxide on the surface of the carbon powder.  相似文献   

11.
Multi-component Al-Fe hydr(oxides) are ubiquituous in soil and aquatic environments, where they exhibit biogeochemical controls on nutrients and contaminants. Although, sorption on single-component Al and Fe hydr(oxides) have been extensively studied, limited studies have been done on their multi-component counterparts. In this study, effects of Al/Fe content on the kinetics and energetics of phosphate sorption in a poorly-crystalline co-precipitated mixed Al-Fe hydr(oxide) system were investigated using a combination of traditional batch techniques and flow adsorption calorimetry. Differences in Al/Fe content was found to influence the structural development and anion exchange capacity of the hydr(oxides) and subsequently their phosphate sorption characteristics. Higher structural development decreased phosphate sorption, while higher AEC was associated with increased phosphate sorption, initial sorption rate, and smaller losses in sorption with increasing pH. Results from flow adsorption calorimetry indicated that at pH 4.8 phosphate sorption: (i) occurred irreversibly on anion exchange sites, with a loss of 1.9 moles of AEC per mole of phosphate sorbed, and (ii) was exothermic, with molar heats of adsorption between -25 and -39 kJmol(-1). Molar heats of adsorption were ten times that for anion exchange and independent of hydr(oxide) composition with the amount of energy evolved being directly proportional to the quantity of phosphate sorbed.  相似文献   

12.
The sorption of iron(III) in ionic and colloidal states on iron(III) oxide deposited on a silica gel surface has been studied as a function of pH of aqueous solution by batch equilibrations. The behaviour of Fe3+ and colloidal Fe(III) on the sorbent column has also been investigated. Conditions for sorption of iron from aqueous solutions are given. The colloidal iron(III) can be quantitatively separated from Fe3+ on the sorbent column under given experimental conditions.  相似文献   

13.
《Analytica chimica acta》1996,319(3):387-392
The quantitative extraction of iron(III) and gallium(III) was investigated with the recently synthesized macrocyclic Schiff base containing bisphenol A subunits. The phenol groups in the Schiff base moiety led to a large increase in the percent extraction of trivalent metal ions. The substitution of methoxy groups for phenolic OH ligands resulted in a marked decrease in the extractability of metal ions, and no iron(III) was extracted. The corresponding acyclic Schiff base was found to have a reasonable reactivity toward metal ions and a better solubility in organic solvents. The iron(III) and gallium(III) complexes with macrocyclic and acyclic Schiff bases were quantitatively extracted into nitrobenzene without the presence of bulky counter anions. A single extraction gave a good separation of iron(III) from iron(II) in the mole ratios 4:1 to 1:3. The red iron(III) complexes can be used for the extraction-spectrophotometric determination of iron(III). The apparent molar absorptivity at 518 nm is 5.43 × 103lmol−1 cm−1.  相似文献   

14.
The interaction of iron(III) ions with nitrilotrimethylphosphonic acid and 1,3-dicarboxypro-pane-1-iminodiacetic acid in aqueous solutions has been studied by spectrophotometry. It has been shown that complex formation in the system is complicated by protonation, hydrolysis, and precipitation. Homoligand 1: 1 complexes of different proton composition have been identified. The stability constants of the iron(III) complexonates and their fractional distribution as a function of pH (T = 20 ± 2°C, I = 0.1) have been determined. Conditions that make it possible to prevent the precipitation of iron(III) nitrilotrimethylphosphonates in the presence of 1,3-dicarboxypropane-1-iminodiacetic acid have been selected.  相似文献   

15.
《Analytical letters》2012,45(6):707-717
Abstract

A method for the spectrophotometrio determination of copper(II), in the presence of iron(III) cations (excess), was stablished. The masking of iron is made with sodium fluoride salt in 50 % (v/v) water/acetone medium. In the recommended conditions, absorbances for cupric complexes are measured at 435 nm where molar absorptivity is 6.00 × 103 1 mol?1 cm?1.

The stable ayetern obeys Beer's law and is suitable for the copper determination in concentration range from 2.0 to 9.0 mg 1?l. The iron(III) ion interference (until ca. 600 mg 1?l) can be completely suppressed. The influence of diverse ions and several others factore were studied.

The results show that copper(II) can be accurately determined by azide apectrophotometric method, if the samples were suitablely treated by the recommended procedure.  相似文献   

16.
The binary systems of iron(II) and iron(III) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied in aqueous solution by pH-potentiometry, ultraviolet–visible spectroscopy and EPR spectra. The formation constants of the iron(II) and iron(III) complexes were calculated from potentiometric and electronic absorption data at 25 °C and ionic strength μ = 0.1 mol·L?1 using the HYPERQUAD program. The values of the formation constant of the FeL species decrease in the order Fe:H2Am4DH > Fe:H2Am4Me ≈ Fe:H2Am4Et > Fe:H2Am4Ph in the same way as the basicity of the ligands. The species distribution diagrams show that the species FeL2 predominates at physiological pH in the Fe:H2Am4DH, Fe:H2Am4Me and Fe:H2Am4Et systems. The similar EPR spectra of these iron(III) binary systems indicate the same coordination spheres around the metallic center and the EPR g values suggests that the unpaired electron is in the dxy orbital, indicating a d xz 2 d yz 2 d xy 1 ground state configuration for the complexes. For the Fe(III):H2Am4Ph system the EPR results indicated dimerization and antiferromagnetic interaction due to the presence of only one thiosemicarbazone ligand around the metallic center.  相似文献   

17.
Iron (III) forms brown coloured complex with 3-hydroxy-2-methyl-1,4-naphthoquinone monoxime. The iron (III)-HMNQM complex is found to be soluble in DMF and exhibits maximum absorption at 470 nm in the pH range 4.5–5.5. Beer's law is obeyed upto 5.58 ppm of iron (III) and sensitivity of the reaction is 0.0046 μg/cm2, with molar absorptivity of 1.21×104 ? mole?1 cm?1. The method has been used for the determination of iron (III) in alloys.  相似文献   

18.
《Analytical letters》2012,45(3):389-401
Abstract

A simple, sensitive and alternative method for the spectrophotometric determination of iron(III) has been established. The procedure is based on the formation of iron-azide complexes in 60% (v/v) tetrahydrofuran/ water medium. The high sensitivity obtained in this method is due to the use of an interesting absorption band not previously reported in the literature. In the recommended conditions, absorbances for the ferric complexes are measured at 400 nm where the molar absorptivity is 1.52 × 104 1 mol?1 cm?1. The organic solvent used increases the sensitivity and the stability of the measurements. The precision is shown by the average deviation of about 0.3%. This system obeys Beer's law and is suitable for iron(III) determination in the concentration range from 0.6 to 3.2 mg 1?1 (ppm). The best experimental conditions were determined studying the different factors involved. The influence of various diverse ions was also studied.  相似文献   

19.
A synthesis of iron(II, III) derivatives of arabinogalactan, involving formation in an alkaline solution of a hydrated iron(II, III) oxide biopolymer, is proposed. Optimal conditions of the synthesis are determined.  相似文献   

20.
A method for the preparation of high-purity iron via the chlorination of a mixture containing iron(III) oxide by ammonium chloride with the subsequent decomposition of the intermediate product to iron(III) chloride, its sublimation, and further reduction in a hydrogen flow was proposed. The reaction between ammonium chloride and iron(III) oxide and the thermal decomposition of the ammonium chloride complex were thermogravimetrically studied. The conditions and energetic characteristics of these reactions were determined. The method was tested on iron-containing raw materials. The impurities in the end product of reduction by hydrogen were 0.25%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号