首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We prove time local existence and uniqueness of solutions to a boundary layer problem in a rotating frame around the stationary solution called the Ekman spiral. We choose initial data in the vector-valued homogeneous Besov space for 2 <  p <  ∞. Here the L p -integrability is imposed in the normal direction, while we may have no decay in tangential components, since the Besov space contains nondecaying functions such as almost periodic functions. A crucial ingredient is theory for vector-valued homogeneous Besov spaces. For instance we provide and apply an operator-valued bounded H -calculus for the Laplacian in for a general Banach space .  相似文献   

2.
We study the dynamics of vortices in solutions of the Gross–Pitaevsky equation in a bounded, simply connected domain with natural boundary conditions on ∂Ω. Previous rigorous results have shown that for sequences of solutions with suitable well-prepared initial data, one can determine limiting vortex trajectories, and moreover that these trajectories satisfy the classical ODE for point vortices in an ideal incompressible fluid. We prove that the same motion law holds for a small, but fixed , and we give estimates of the rate of convergence and the time interval for which the result remains valid. The refined Jacobian estimates mentioned in the title relate the Jacobian J(u) of an arbitrary function to its Ginzburg–Landau energy. In the analysis of the Gross–Pitaevsky equation, they allow us to use the Jacobian to locate vortices with great precision, and they also provide a sort of dynamic stability of the set of multi-vortex configurations.  相似文献   

3.
We study the initial-boundary value problem for the Stokes equations with Robin boundary conditions in the half-space It is proved that the associated Stokes operator is sectorial and admits a bounded H-calculus on As an application we prove also a local existence result for the nonlinear initial value problem of the Navier–Stokes equations with Robin boundary conditions.  相似文献   

4.
In this paper, we study a free boundary problem obtained as a limit as ε → 0 to the following regularizing family of semilinear equations , where β ε approximates the Dirac delta in the origin and F is a Lipschitz function bounded away from 0 and infinity. The least supersolution approach is used to construct solutions satisfying geometric properties of the level surfaces that are uniform in ε. This allows to prove that the free boundary of a limit has the “right” weak geometry, in the measure theoretical sense. By the construction of some barriers with curvature, the classification of global profiles of the blow-up analysis is carried out and the limit functions are proven to be viscosity and pointwise solution ( almost everywhere) to a free boundary problem. Finally, the free boundary is proven to be a C 1,α surface around almost everywhere point. An erratum to this article can be found at  相似文献   

5.
We consider the Allen–Cahn equation in a bounded, smooth domain Ω in , under zero Neumann boundary conditions, where is a small parameter. Let Γ0 be a segment contained in Ω, connecting orthogonally the boundary. Under certain nondegeneracy and nonminimality assumptions for Γ0, satisfied for instance by the short axis in an ellipse, we construct, for any given N ≥ 1, a solution exhibiting N transition layers whose mutual distances are and which collapse onto Γ0 as . Asymptotic location of these interfaces is governed by a Toda-type system and yields in the limit broken lines with an angle at a common height and at main order cutting orthogonally the boundary.  相似文献   

6.
This paper uses direct numerical simulations (DNS) of turbulent flow in a channel at (Del álamo, Jiménez, Zandonade, Moser J Fluid Mech 500:135–144, 2004) to provide a picture of the turbulent structures making large contributions to the Reynolds shear stress. Considerable work of this type has been done for the viscous wall region at smaller , for which a log-layer does not exist. Recent PIV measurements of turbulent velocity fluctuations in a plane parallel to the direction of flow have emphasized the dominant contribution of large scale structures in the outer flow. This prompted Hanratty and Papavassiliou (The role of wall vortices in producing turbulence. In: Panton, R.L. (ed) Self-sustaining Mechanism of Wall Turbulence. Computational Mechanics Publications, Southampton, pp. 83–108, 1997) to use DNS at to examine these structures in a plane perpendicular to the direction of flow. They identified plumes which extend from the wall to the center of a channel. The data at are used to explore these results further, to examine the structure of the log-layer, and to test present notions about the viscous wall layer.  相似文献   

7.
For applications where droplet breakup and surfactant adsorption are strongly coupled, a diffuse interface model is developed. The model is based on a free energy functional, partly adapted from the sharp interface model of [Diamant and Andelman 34(8):575–580, (1996)]. The model is implemented as a 2D Lattice Boltzmann scheme, similar to existing microemulsion models, which are coupled to hydrodynamics. Contrary to these microemulsion models, we can describe realistic adsorption isotherms, such as the Langmuir isotherm. From the free energy, functional analytical expressions of equilibrium properties are derived, which compare reasonably with numerical results. Interfacial tension lowering scales with the logarithm of the area fraction of the interface unloaded with a surfactant: . Furthermore, we show that adsorption kinetics are close to the classical relations of Ward and Tordai. Prelimary simulations of droplets in shear flow show promising results, with surfactants migrating to interfacial regions with highest curvature. We conclude that our diffuse interface model is very promising for apprehending the above-mentioned applications as membrane emulsification. Paper presented at the Annual European Rheology Conference (AERC) 2005, April 21–23, Grenoble, France.  相似文献   

8.
Let be a body moving by prescribed rigid motion in a Navier–Stokes liquid that fills the whole space and is subject to given boundary conditions and body force. Under the assumptions that, with respect to a frame , attached to , these data are time independent, and that their magnitude is not “too large”, we show the existence of one and only one corresponding steady motion of , with respect to , such that the velocity field, at the generic point x in space, decays like |x|−1. These solutions are “physically reasonable” in the sense of FINN [10]. In particular, they are unique and satisfy the energy equation. Among other things, this result is relevant in engineering applications involving orientation of particles in viscous liquid [14].  相似文献   

9.
Under certain assumptions on f and g we prove that positive, global and bounded solutions u of the non-autonomous heat equation
in (N ≥ 3) converge to a steady state. Dedicated to Prof. Pavol Brunovsky on the occasion of his 70th birthday.  相似文献   

10.
In this paper, we establish existence and uniqueness up to dilations for the reflector problem in a nonisotropic medium in for which light wavefronts are described by non-Euclidean norm spheres, through approaches of paraboloid approximation and optimal mass transport. Research of L. A. Caffarelli supported in part byNSF grant No. DMS-0140338; research of Q. Huang supported in part by NSF grants No. DMS-0201599 and No. DMS-0502045.  相似文献   

11.
We consider in this paper the equations of motion of third grade fluids on a bounded domain of or with Navier boundary conditions. Under the assumption that the initial data belong to the Sobolev space H 2, we prove the existence of a global weak solution. In dimension two, the uniqueness of such solutions is proven. Additional regularity of bidimensional initial data is shown to imply the same additional regularity for the solution. No smallness condition on the data is assumed.  相似文献   

12.
A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn–Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics\(^{\circledR }\) for a spherically symmetric boundary value problem of lithium insertion into a \(\hbox {Li}_x\hbox {Mn}_2\hbox {O}_4\) cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for \(\hbox {Li}_x\hbox {Mn}_2\hbox {O}_4\), and the interface evolution is studied. Comparison to the Cahn–Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn–Hilliard theory.  相似文献   

13.
Consider the problem where Ω is a bounded convex domain in , N > 2, with smooth boundary . We study the asymptotic behaviour of the least energy solutions of this system as . We show that the solution remain bounded for p large. In the limit, we find that the solution develops one or two peaks away from the boundary, and when a single peak occurs, we have a characterization of its location.This research was supported by FONDECYT 1061110 and 3040059.  相似文献   

14.
In this paper, we construct solutions u(t,x) of the heat equation on such that has nontrivial limit points in as t → ∞ for certain values of μ > 0 and β > 1/2. We also show the existence of solutions of this type for nonlinear heat equations.   相似文献   

15.
A particle nonlinear two-scale turbulence model is proposed for simulating the anisotropic turbulent two-phase flow. The particle kinetic energy equation for two-scale fluctuation, particle energy transfer rate equation for large-scale fluctuation, and particle turbulent kinetic energy dissipation rate equation for small-scale fluctuation are derived and closed. This model is used to simulate gas–particle flows in a sudden-expansion chamber. The simulation is compared with the experiment and with those obtained by using another two kinds of tow-phase turbulence model, such as the single-scale two-phase turbulence model and the particle two-scale second-order moment (USM) two-phase turbulence model. It is shown that the present model gives simulation in much better agreement with the experiment than the single-scale two-phase turbulence model does and is almost as good as the particle two-scale USM turbulence model. The project supported by China Postdoctoral Science Foundation (2004036239).  相似文献   

16.
We study the limit of the hyperbolic–parabolic approximation
The function is defined in such a way as to guarantee that the initial boundary value problem is well posed even if is not invertible. The data and are constant. When is invertible, the previous problem takes the simpler form
Again, the data and are constant. The conservative case is included in the previous formulations. Convergence of the , smallness of the total variation and other technical hypotheses are assumed, and a complete characterization of the limit is provided. The most interesting points are the following: First, the boundary characteristic case is considered, that is, one eigenvalue of can be 0. Second, as pointed out before, we take into account the possibility that is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if this condition is not satisfied, then pathological behaviors may occur.  相似文献   

17.
Crack Initiation in Brittle Materials   总被引:1,自引:0,他引:1  
In this paper we study the crack initiation in a hyper-elastic body governed by a Griffith-type energy. We prove that, during a load process through a time-dependent boundary datum of the type tt g(x) and in the absence of strong singularities (e.g., this is the case of homogeneous isotropic materials) the crack initiation is brutal, that is, a big crack appears after a positive time t i > 0. Conversely, in the presence of a point x of strong singularity, a crack will depart from x at the initial time of loading and with zero velocity. We prove these facts for admissible cracks belonging to the large class of closed one-dimensional sets with a finite number of connected components. The main tool we employ to address the problem is a local minimality result for the functional where , k > 0 and f is a suitable Carathéodory function. We prove that if the uncracked configuration u of Ω relative to a boundary displacement ψ has at most uniformly weak singularities, then configurations (uΓ, Γ) with small enough are such that .  相似文献   

18.
19.
For , we consider a family of damped wave equations , where − Λ denotes the Laplacian with zero Dirichlet boundary condition in L 2(Ω). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space semigroups which have global attractors A η, . We show that the family , behaves upper and lower semicontinuously as the parameter η tends to 0+.  相似文献   

20.
We prove the local-in-time existence of solutions with a surface of current-vortex sheet (tangential discontinuity) of the equations of ideal compressible magnetohydrodynamics in three space dimensions provided that a stability condition is satisfied at each point of the initial discontinuity. This paper is a natural completion of our previous analysis (Trakhinin in Arch Ration Mech Anal 177:331–366, 2005) where a sufficient condition for the weak stability of planar current-vortex sheets was found and a basic a priori estimate was proved for the linearized variable coefficients problem for nonplanar discontinuities. The original nonlinear problem is a free boundary hyperbolic problem. Since the free boundary is characteristic, the functional setting is provided by the anisotropic weighted Sobolev spaces . The fact that the Kreiss–Lopatinski condition is satisfied only in a weak sense yields losses of derivatives in a priori estimates. Therefore, we prove our existence theorem by a suitable Nash–Moser-type iteration scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号