首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.  相似文献   

2.
We present an overlapping domain decomposition technique for solving the hypersingular integral equation on the sphere with spherical splines. We prove that the condition number of the additive Schwarz operator is bounded by O(H/δ), where H is the size of the coarse mesh and δ is the overlap size, which is chosen to be proportional to the size of the fine mesh. In the case that the degree of the splines is even, a better bound O(1 + log2(H/δ)) is proved. The method is illustrated by numerical experiments on different point sets including those taken from magsat satellite data.  相似文献   

3.
The Galerkin finite element method for the forward-backward heat equation is generalized to a wider class of equations with the use of a result on the existence and uniqueness of a weak solution to the problems. First, the theory for the Galerkin method is extended to forward-backward heat equations which contain additional convection and mass terms on an irregular domain. Second, variable transformations are constructed and applied to solve a wide class of forward-backward heat equations that leads to a substantial improvement. Third, Error estimates are presented. Finally, conducted numerical tests corroborate the obtained results. Received February 4, 1997 / Revised version received December 8, 1997  相似文献   

4.
A space-time finite element method,discontinuous in time but continuous in space, is studied to solve the nonlinear forward-backward heat equation. A linearized technique is introduced in order to obtain the error estimates of the approximate solutions. And the numerical simulations are given.  相似文献   

5.
In this paper, we analyze the BEM-FEM non-overlapping domain decomposition method introduced in Boubendir [Techniques de Décomposition de Domaine et Méthode d’Equations Intégrales, Ph.D. Thesis, INSA, Toulouse, France, 2002] and improved in Boubendir et al. [A coupling BEM-FEM method using a FETI-LIKE domain decomposition method, in: Proceedings of Waves 2005, Providence, RI, 2005, pp. 188–190] and Bendali et al. [A FETI-like domain decomposition method for coupling FEM and BEM in large-size problems of acoustic scattering, to appear.] The transmission conditions used in this method introduce a quantity that prevents the approach of Després [Méthodes de décomposition de domaine pour les problèmes de propagation d’ondes en régime harmonique, Le théorème de Borg pour l’équation de Hill vectorielle, Ph.D. Thesis, Paris VI University, France, 1991] to establish convergence to be adapted. However, we show that convergence can be established when the geometry allows for a decomposition of the solution into propagating and evanescent portions with a methodology based on modal analysis. Here, we exemplify this in the case of circular cylindrical geometries where the derivations can be based on properties of Bessel functions.  相似文献   

6.
We propose a Schwarz-based domain decomposition method for solving a dispersion equation consisting on the linearized KdV equation without the advective term, using simple interface operators based on the exact transparent boundary conditions for this equation. An optimization process is performed for obtaining the approximation that provides the method with the fastest convergence to the solution of the monodomain problem.  相似文献   

7.
We propose a local improvement of domain decomposition methods which fits with the singularities occurring in the solutions of elliptic equations in polygonal domains. This short presentation focuses on a model elliptic problem with the decomposition of a non-convex polygonal domain into convex polygonal subdomains. After explaining the strategy and the theoretical design of adapted interface conditions at the corner, we present numerical experiments which show that these new interface conditions satisfy some optimality properties. To cite this article: C. Chniti et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).  相似文献   

8.
In this paper we propose a new domain decompostion method for solving a Hamilton–Jacobi–Bellman equation of second order. The basic idea is to solve an equivalent quasivariational inequality instead of the original discretized HJB equation.  相似文献   

9.
Some exact solutions to a nonlinear heat equation are constructed. An initial-boundary value problem is examined for a nonlinear heat equation. To construct solutions, the problem for a partial differential equation of the second order is reduced to a similar problem for a first order partial differential equation.  相似文献   

10.
A meshfree method is developed for solving time-discrete diffusion equations that arise in models in brain research. Important criteria for a suitable method are flexibility with respect to domain geometry and the ability to work with very small moving sources requiring easy refinement possibilities. One part of the work concerns a meshfree discretization of the modified Helmholtz equation based on the related minimization problem and a local least-squares function approximation. In a second part, a node choosing algorithm is presented that moves around randomly distributed nodes for optimizing the node distribution and varying the node density as needed. The method is illustrated by two numerical tests.  相似文献   

11.
In order to overcome the problem of singularities and nonuniform grids arising when solving eikonal equation in spherical coordinate systems, a spherical Cartesian coordinate system is defined and the Hamiltonian form of the eikonal equation according to this coordinate system is given. A modified velocity function that can transform spherical coordinate system–based eikonal equation into ones based on a spherical Cartesian coordinate system is deduced by using a differential geometric method where a layered distribution of the velocity function is assumed. After comparing the results of using this approach with the traditional method of solving eikonal equation based on a spherical coordinate system, the viability of the transformation to a spherical Cartesian coordinate system based on a modified velocity function is proven. Despite the assumption of a layered distribution of the velocity function, it is also proven that the method will hold for a velocity function under any three-dimensional distribution. The new method overcomes problems present in traditional approaches and opens up a new way of solving eikonal equation in a spherical computational domain.  相似文献   

12.
The nonoxerlapping domain deoomposition method for parabolic partial differential equation on general domain is considered. A kind of domain decomposition that uses the finite element procedure ks given. The problem.over the domains can be implemented on parallel computer. Convergence analysis is also presented.  相似文献   

13.
This article deals with the analysis of an iterative non-overlapping domain decomposition (DD) method for elliptic problems, using Robin-type boundary condition on the inter-subdomain boundaries, which can be solved in parallel with local communications. The proposed iterative method allows us to relax the continuity condition for Lagrange multipliers on the inter-subdomain boundaries. In order to derive the corresponding discrete problem, we apply a non-conforming Galerkin method using lowest order Crouzeix–Raviart elements. The convergence of the iterative scheme is obtained by proving that the spectral radius of the matrix associated with the fixed point iterations is less than 1. Parallel computations have been carried out and the numerical experiments confirm the theoretical results established in this paper.  相似文献   

14.
Summary. Galerkin and weighted Galerkin methods are proposed for the numerical solution of parabolic partial differential equations where the diffusion coefficient takes different signs. The approach is based on a simultaneous discretization of space and time variables by using continuous finite element methods. Under some simple assumptions, error estimates and some numerical results for both Galerkin and weighted Galerkin methods are presented. Comparisons with the previous methods show that new methods not only can be used to solve a wider class of equations but also require less regularity for the solution and need fewer computations. Received March 3, 1995  相似文献   

15.
A new two‐level black‐box preconditioner based on the hybrid domain decomposition technique is proposed and studied. The preconditioner is a combination of an additive Schwarz preconditioner and a special smoother. The smoother removes dependence of the condition number on the number of subdomains and variations of the diffusion coefficient and leaves minor sensitivity to the problem size. The algorithm is parallel and pure algebraic which makes it a convenient framework for the construction parallel black‐box preconditioners on unstructured meshes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In this article a new approach is proposed for constructing a domain decomposition method based on the iterative operator splitting method. The convergence properties of such a method are studied. The main feature of the proposed idea is the decoupling of space and time. We present a multi-iterative operator splitting method that combines iteratively the space and time splitting. We confirm with numerical applications the effectiveness of the proposed iterative operator splitting method in comparison with the classical Schwarz waveform relaxation method as a standard method for domain decomposition. We provide improved results and convergence rates.  相似文献   

17.
In this paper, we present a meshfree technique for the numerical solution of the regularized long wave (RLW) equation. This approach is based on a global collocation method using the radial basis functions (RBFs). Different kinds of RBFs are used for this purpose. Accuracy of the new method is tested in terms of L2L2 and LL error norms. In case of non-availability of the exact solution, performance of the new method is compared with existing methods. Stability analysis of the method is established. Propagation of single and double solitary waves, wave undulation, and conservation properties of mass, energy and momentum of the RLW equation are discussed.  相似文献   

18.
For the one-dimensional singularly perturbed parabolic reaction-diffusion equation with a perturbation parameter ɛ, where ɛ ∈ (0, 1], the grid approximation of the Dirichlet problem on a rectangular domain in the (x, t)-plane is examined. For small ɛ, a parabolic boundary layer emerges in a neighborhood of the lateral part of the boundary of this domain. A new approach to the construction of ɛ-uniformly converging difference schemes of higher accuracy is developed for initial boundary value problems. The asymptotic construction technique is used to design the base decomposition scheme within which the regular and singular components of the grid solution are solutions to grid subproblems defined on uniform grids. The base scheme converges ɛ-uniformly in the maximum norm at the rate of O(N −2ln2 N + N 0−1), where N + 1 and N 0 + 1 are the numbers of nodes in the space and time meshes, respectively. An application of the Richardson extrapolation technique to the base scheme yields a higher order scheme called the Richardson decomposition scheme. This higher order scheme convergesɛ-uniformly at the rate of O(N −4ln4 N + N 0−2). For fixed values of the parameter, the convergence rate is O(N −4 + N 0−2).  相似文献   

19.
对无界区域上带移动热源的反应扩散方程提出了局部吸收边界条件.移动网格方法对导出的有界区域问题进行了求解.数值例子显示了当热源移动的速度比较慢的时候,方程会在有限时间内发生爆破现象.而当热源移动的速度足够快时,爆破现象不会发生.数值例子验证了新方法的有效性和精确性.  相似文献   

20.
In this study we prove a stability estimate for an inverse heat source problem in the n-dimensional case. We present a revised generalized Tikhonov regularization and obtain an error estimate. Numerical experiments for the one-dimensional and two-dimensional cases show that the revised generalized Tikhonov regularization works well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号