首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of quantum well number on the quantum efficiency and temperature characteristics of In- GaN/GaN laser diodes (LDs) is determined and investigated. The 3-nm-thick In0.13Ca0.87N wells and two 6-am-thick GaN barriers are selected as an active region for Fabry-Perot (FP) cavity waveguide edge emitting LD. The internal quantum efficiency and internal optical loss coefficient are extracted through the simulation software for single, double, and triple InGaN/GaN quantum wells. The effects of device temperature on the laser threshold current, external differential quantum efficiency (DQE), and output wavelength are also investigated. The external quantum efficiency and characteristic temperature are improved significantly when the quantum well number is two. It is indicated that the laser structures with many quantum wells will suffer from the inhomogeneity of the carrier density within the quantum well itself which affects the LD performance.  相似文献   

2.
Wen-Jie Wang 《中国物理 B》2022,31(7):74206-074206
The effects of GaN/InGaN asymmetric lower waveguide (LWG) layers on photoelectrical properties of InGaN multiple quantum well laser diodes (LDs) with an emission wavelength of around 416 nm are theoretically investigated by tuning the thickness and the indium content of InGaN insertion layer (InGaN-IL) between the GaN lower waveguide layer and the quantum wells, which is achieved with the Crosslight Device Simulation Software (PIC3D, Crosslight Software Inc.). The optimal thickness and the indium content of the InGaN-IL in lower waveguide layers are found to be 300 nm and 4%, respectively. The thickness of InGaN-IL predominantly affects the output power and the optical field distribution in comparison with the indium content, and the highest output power is achieved to be 1.25 times that of the reference structure (symmetric GaN waveguide), which is attributed to the reduced optical absorption loss as well as the concentrated optical field nearby quantum wells. Furthermore, when the thickness and indium content of InGaN-IL both reach a higher level, the performance of asymmetric quantum wells LDs will be weakened rapidly due to the obvious decrease of optical confinement factor (OCF) related to the concentrated optical field in the lower waveguide.  相似文献   

3.
对InGaN量子阱LED的内量子效率进行了优化研究。分别对发光光谱、量子阱中的载流子浓度、能带分布、静电场和内量子效应进行了理论分析。对具有不同量子阱数量的InGaN/GaN LED进行了理论数值比对研究。研究结果表明,对于传统结构的LED而言,2个量子阱的结构相对于5个和7个量子阱具有更好的光学性能。同时还研究了具有三角形量子阱结构的LED,研究结果显示,三角形多量子阱结构具有较高的电致发光强度、更高的内量子效率和更好的发光效率,所有的优点都归因于较高的电子-空穴波函数重叠率和低的Stark效应所产生的较高的载流子输入效率和复合发光效率。  相似文献   

4.
GaN-based blue laser diodes (LDs) may exhibit anomalous temperature characteristics such as a very high or negative characteristic temperature (T 0). In this work, the temperature characteristics of blue LDs having InGaN double quantum-well (QW) active region are investigated using numerical simulation. It is found that the T 0 is greatly influenced by the n-type doped barrier between the QWs and a negative T 0 can be observed for the LD structure with a heavily doped barrier. The negative T 0 of InGaN blue LDs is mainly attributed to the decrease of the Auger recombination rate at the p-side QW with increasing temperature as a result of the thermally enhanced hole transport from the p-side to the n-side QW.  相似文献   

5.
The performance characteristics of deep violet In0.082Ga0.918N/GaN double quantum well (DQW) laser diodes (LDs) with different electron blocking layer (EBL) including a ternary AlGaN bulk EBL, a quaternary AlInGaN bulk EBL and ternary AlGaN multi quantum barrier (MQB) EBL has been numerically investigated. Inspired by the abovementioned structures, a new LD structure with a quaternary AlInGaN MQB EBL has been proposed to improve the performance characteristics of the deep violet InGaN DQW LDs. Simulation results indicated that the LD structure with the quaternary AlInGaN MQB EBL present the highest output power, slope efficiency and differential quantum efficiency (DQE) and lowest threshold current compared with the above mentioned structures. They also indicated that choosing an appropriate aluminum (Al) and indium (In) composition in the quaternary AlInGaN MQB layers could control both piezoelectric and spontaneous polarizations. It will decrease the electron overflow from the active region to p-side and increased the contribution of electron and hole carriers to the radiative recombination effectively. Enhancing radiative recombination in the well using the quaternary AlInGaN MQB EBL also increased the optical output power and optical intensity.  相似文献   

6.
The optical properties of the InGaN/GaN quantum well with insertion of ultrathin InN layer is investigated by using the effective mass theory taking into account the valence band mixing effects. The total spontaneous emission radiation recombination rate can be optimized by modulating the position of InN layer in the InGaN QW. Meanwhile, it is observed that the difference of the spontaneous emission rate becomes smaller with increasing the sheet carrier density. Then, the influences of intermixing effect at the interface between InN and InGaN layers on the optical gain are analyzed. It shows the emission intensity is reduced as compared to the ideal QW structure while peak wavelength is red-shifted by ∼10 nm in the investigation range of Lsn. Finally, the influence of partial strain relaxation on the lasing wavelength is discussed, which shows a blue shift of ∼27 nm in the case with residual strain of 50% in comparison to the no strain relaxation case.  相似文献   

7.
A violet laser diode (LD) structure is grown on a free-standing c-plane GaN substrate and 4~μ m× 800~μ m ridge waveguide LDs are fabricated. The electrical and the optical characteristics of LDs under different facet-coating and chip-mounting conditions are investigated under pulse mode operation. The active region temperatures of p-side up and p-side down mounted LDs are calculated with different injection currents. The calculated thermal resistances of p-side up and p-side down mounted LDs are 4.6~K/W and 3~K/W, respectively. The threshold current of the p-side down mounted LD is much lower than that of the p-side up mounted LD. The blue shift of the emission wavelength with increasing injection current is observed only for the LD with p-side down mounting configuration, due to the more efficient heat dissipation.  相似文献   

8.
在以自组织Ni纳米岛为掩膜制作的n-GaN纳米柱上,利用MOCVD方法外延生长了具有折叠InGaN/GaN多量子阱(MQW)的LED结构外延片,进而制作了LED器件.外延片上中下游的光致荧光测试,结果表明外延片具有很好的均匀性.用该外延片制作的LED的电致发光谱,随注入电流增加没有明显蓝移,这表明纳米结构能更好地释放应力,纳米柱上外延生长的多量子阱,具有较低的压电极化电场.正向工作电流20 mA时,LED器件的工作电压为4.6 V. 关键词: 纳米柱LED 光致发光 电致发光  相似文献   

9.
It is shown that in polar InGaN QWs emitting in the blue-green spectral region a Stokes shift between spontaneous emission (SE) and optical transition observed in contactless electroreflectance (CER) spectrum (absorption-like technique) can be observed even at room temperature, despite the fact that the SE is not associated with localized states. Time resolved photoluminescence measurements clearly confirm that the SE is strongly localized at low temperatures whereas at room temperature the carrier localization disappears and the SE can be attributed to the fundamental transition in this QW. The Stokes shift is observed in this QW system because of the large built-in electric field, i.e., the CER transition is a superposition of all optical transitions with non-zero electron-hole overlap integrals and, therefore, the energy of this transition does not correspond to the fundamental transition of InGaN QW. Lasing from this QW has been observed at the wavelength of 475 nm, whereas the SE was observed at 500 nm. The 25 nm shift between the lasing and SE is observed because of a screening of the built-in electric field by photogenerated carriers. However, our analysis shows that the built-in electric field inside the InGaN QW region is not fully screened under the lasing conditions.  相似文献   

10.
We calculate optical gain coefficient and threshold current density in ZnS/MgBeZnS quantum wells (QWs) because ZnS/MgBeZnS QWs are useful for the fabrication of an ultraviolet laser on zinc-blende substrates. The threshold current density in a ZnS/MgBeZnS QW laser diode (LD) with a 10 nm ZnS active layer is calculated to be 1.63 kA/cm2. By comparing the measured J th in a CdZnSe/ZnSSe/ZnMgSSe QW LD with that calculated by us, it is expected that the threshold current density in ZnS/MgBeZnS QW LDs measured by experiment is larger than that calculated by our calculation method.  相似文献   

11.
The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zndiffusions were respectively carried out at 480, 500, 520, 540, and 580 ℃ for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 ℃. When the blue shift was 24.7 meV at 480 ℃, the COD power for the window LD was 86.7% higher than the conventional LD.  相似文献   

12.
本文将基于有效质量近似下的变分法,理论研究了纤锌矿InGaN/GaN staggered 量子阱中的激子态和光学性质。数值结果显示了InGaN量子阱中的量子尺寸和staggered受限垒对束缚于量子阱中的激子态和光学性质有着明显地影响。当阱宽增加时,量子受限效应减弱,激子结合能降低, 带间发光波长增加。另一方面,当量子阱中staggered受限势增加时,量子受限效应增强,激子结合能升高,带间发光波长降低。本文的理论结果证明了可以通过调节staggered垒高和量子尺寸来调控纤锌矿InGaN staggered 量子阱中的激子态和光学性质。  相似文献   

13.
本文将基于有效质量近似下的变分法,理论研究了纤锌矿InGaN/GaN staggered量子阱中的激子态和光学性质.数值结果显示了InGaN量子阱中的量子尺寸和staggered受限垒对束缚于量子阱中的激子态和光学性质有着明显的影响.当阱宽增加时,量子受限效应减弱,激子结合能降低,带间发光波长增加.另一方面,当量子阱中staggered受限势增加时,量子受限效应增强,激子结合能升高,带间发光波长降低.本文的理论结果证明了可以通过调节staggered垒高和量子尺寸来调控纤锌矿InGaN staggered量子阱中的激子态和光学性质.  相似文献   

14.
Although of the potential advantages of quaternary AlInGaN as a blocking layer (BL) in double quantum well (QW) violet InGaN laser diode (LD), simulation results indicated that the temperature characteristic (To value) of the LD with a quaternary AlInGaN BL is lower than the To value of the LD with a conventional ternary AlGaN BL, whereas the To value of the LD with quaternary AlInGaN BL is 180 K and the To value with ternary AlGaN BL it is 194 K. This is due to the enhance carrier holes distribution between the double QWs with using the quaternary BL.  相似文献   

15.
A strain-compensated InGaN quantum well(QW) active region employing a tensile AlGaN barrier is analyzed.Its spectral stability and efficiency droop for a dual-blue light-emitting diode(LED) are improved compared with those of the conventional InGaN/GaN QW dual-blue LEDs based on a stacking structure of two In0.18Ga0.82N/GaN QWs and two In0.12Ga0.88N/GaN QWs on the same sapphire substrate.It is found that the optimal performance is achieved when the Al composition of the strain-compensated AlGaN layer is 0.12 in blue QW and 0.21 in blue-violet QW.The improvement performance can be attributed to the strain-compensated InGaN-AlGaN/GaN QW,which can provide a better carrier confinement and effectively reduce leakage current.  相似文献   

16.
Two ultraviolet InGaN/GaN light emitting diodes (LEDs) with and without InGaN underlying layer beneath the multiple quantum wells (MQWs) were grown by metal-organic vapor phase epitaxy. Based on the photoluminescence excitation measurements, it was found that the Stokes shift of the sample with a 10-nm-thick In0.1Ga0.9N underlying layer was about 64 meV, which was smaller than that of the reference sample without InGaN underlying layer, indicating a reduced quantum-confined Stark effect (QCSE) due to the decrease of the piezoelectric polarization field in the MQWs. In addition, by fitting the photon energy dependence of carrier lifetime values, the radiative recombination lifetime of the sample with and without InGaN underlying layer were obtained about 1.22 and 1.58 ns at 10?K, respectively. The shorter carrier lifetime also confirmed that the QCSE in the MQWs was weakened after inserting the InGaN underlying layer. In addition, although the depth of carrier localization in the sample with InGaN underlying layer became smaller, the nonradiative recombination centers (NRCs) inside it decreased, and thus suppressed the nonradiative recombination process significantly according to the electroluminescence measurement results. Compared to the reference sample, the efficiency droop behavior was delayed in the sample with InGaN underlying layer and the droop effect was also effectively alleviated. Therefore, the enhanced light-emission efficiency of ultraviolet InGaN/GaN MQW LEDs could be attributed to the decrease of QCSE and NRCs.  相似文献   

17.
InGaN multiple quantum well laser diode (LD) wafer that lased at 400 nm was shown to have the InN mole fraction, x, of only 6% in the wells. Nanometer-probe compositional analysis showed that the fluctuation of x was as small as 1% or less, which is the resolution limit. However, the wells exhibited a Stokes-like shift (SS) of 49 meV and an effective localization depth E0 was estimated by time-resolved photoluminescence (TRPL) measurement to be 35 meV at 300 K. Since the effective electric field due to polarization in the wells is estimated to be as small as 286 kV/cm, SS is considered to originate from an effective bandgap inhomogeneity. Because the well thickness fluctuation was insufficient to produce SS or E0, the exciton localization is considered to be an intrinsic phenomenon in InGaN material. Indeed, bulk cubic In0.1Ga0.9N, which does not suffer any polarization field or thickness fluctuation effect, exhibited an SS of 140 meV at 77 K and similar TRPL results. The origin of the localization is considered to be due to the large bandgap bowing and In clustering in InGaN material. Such shallow and low density localized states are leveled by injecting high density carriers under the lasing conditions for the 400 nm LDs.  相似文献   

18.
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.  相似文献   

19.
We theoretically investigate the optical properties of an ultra-thin InN layer embedded in InGaN matrix for light emitters. The peak emission wavelength extends from ultraviolet (374 nm) to green (536 nm) with InN quantum well thickness increasing from 1 monolayer to 2 monolayers, while the overlap of electron-hole wave function remains at a high level (larger than 90%). Increase of In content in InGaN matrix provides a better approach to longer wavelength emission, which only reduces the spontaneous emission rate slightly compared with the case of increasing In content of the conventional InGaN quantum well. Also, the transparency carrier density derived from gain spectrum is of the same order as that in the conventional blue laser diode. Our study provides skillful design on the development of novel structure InN-based light emitting diodes as well as laser diodes.  相似文献   

20.
The design strategy presently employed to obtain ‘white’ light from semiconductors combines the emission of an InGaN blue or UV light‐emitting diode (LED) with that of one or more yellow‐orange phosphors. While commercially successful, this approach achieves good colour rendering only by increasing the number and spectral range of the phosphors used; compared to the alternative of combining ‘true’ red, green and blue (RGB) sources, it is intrinsically inefficient. The two major roadblocks to the RGB approach are 1. the green gap in the internal quantum efficiency (IQE) of LEDs; 2. the diode droop in the efficiency of LEDs at higher current densities. The physical origin of these effects, in the case of III‐nitrides, is generally thought to be a combination of Quantum Confined Stark Effect (QCSE) and Auger Effect (AE). These effects respectively reduce the electron–hole wave‐ function overlap of In‐rich InGaN quantum wells (QW), and provide a non‐radiative shunt for electron–hole recombination, particularly at higher excitation densities. SORBET, a novel band gap engineering strategy based upon quantum well intermixing (QWIM), offers solutions to both of the roadblocks mentioned above. In this introduction to SORBET, its great potential is tested and confirmed by the results of simulations of green InGaN diodes performed using the TiberCAD device modelling suite, which calculates the macroscopic properties of real‐world optoelectronic and electronic devices in a multiscale formalism. An alternative approach to the realisation of RGB GaN‐based LEDs through doping of an active layer by rare earth (RE) ions will also be briefly described. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号