首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different approaches to solve the spinor–spinor Bethe–Salpeter (BS) equation in Euclidean space are considered. It is argued that the complete set of Dirac matrices is the most appropriate basis to define the partial amplitudes and to solve numerically the resulting system of equations with realistic interaction kernels. Other representations can be obtained by performing proper unitary transformations. A generalization of the iteration method for finding the energy spectrum of the BS equation is discussed and examples of concrete calculations are presented. Comparison of relativistic calculations with available experimental data and with corresponding non relativistic results together with an analysis of the role of Lorentz boost effects and relativistic corrections are presented. A novel method related to the use of hyperspherical harmonics is considered for a representation of the vertex functions suitable for numerical calculations.  相似文献   

2.
The optical spectra of ammonium sulfate in the paraelectric phase are investigated in the visible and near-IR ranges. The temperature dependences of the parameter σ of the Urbach rule and the degree of depolarization of the luminescence spectrum exhibit a minimum in the temperature range 120–140°C. This minimum can be associated with the rearrangement of the electronic subsystem and the corresponding isostructural transformations of the lattice. In the near-IR range, the absorption spectrum contains two bands with maxima at energies of 0.50 and 0.75 eV. The shape of the bands and the temperature dependence of the conductivity allow us to interpret these bands as the result of dissociation of polarons of a large radius with binding energies of 0.12 and 0.17 eV.  相似文献   

3.
The microstructural evolution and the martensitic transformation (bcc–hcp and bcc–fcc) mechanisms during the solidification process of liquid metal Pb were studied by molecular dynamics simulation. Results indicate that, with the decrease of temperature, the system undergoes two phase transitions: from the liquid state into a metastable bcc phase first and then from the bcc phase into a coexisting crystal structure of hcp and fcc phases. Moreover, the complicated martensitic transformation processes are clearly observed by cluster type index method (CTIM) and the tracing method. The two transformation mechanisms are very analogous at the atomic level; the essential difference between them is that, in the bcc–hcp transformation, two adjacent layers shift in opposite directions, whereas in the bcc–fcc transformation, the top layer and bottom layer shift in opposite directions relative to the middle layer. The specific mechanisms for the bcc–hcp and bcc–fcc transformations are confirmed to correspond to the revised Burgers mechanism and Bain mechanism, respectively.  相似文献   

4.
Based on the ideas of adiabatic invariant quantity, we attempt to quantize the entropy of a charged black hole in de Sitter spacetime in two different coordinates. The entropy spectrum is obtained by imposing Bohr-Sommerfeld quantization rule and the laws of black hole thermodynamics to the modified adiabatic covariant action of the charged black hole. The result shows that the spacing of entropy spectrum is equidistant, and the corresponding horizon area quantum is identical to Bekenstein’s result. Interestingly, in contrast to the quasinormal mode analysis, we note that there is no need to impose the small charge limit for the obtained entropy spectrum of the charged black hole. We also note that the modified adiabatic covariant action gives the same value for the black hole entropy spectrum in different coordinate frames. This is a physically desired result since the entropy spectrum should be invariant under the coordinate transformations.  相似文献   

5.
The transverse response (transverse dynamic susceptibility) of coupled localized (s) and delocalized (e) electron spins of a metal paramagnet as well as the longitudinal dynamic response of such a system (to be registered by a longitudinal coil) to the modulation of microwave power saturating electron spin resonance (ESR) are calculated. The ESR spectrum is analytically decomposed into two Lorentzians with normal resonance frequencies and decay rates of the coupled localized +delocalized electron spin system. In the case of relaxationally coupled s- and e-spins the longitudinal response is decomposed into two “relaxational” Lorentzians squared with amplitudes containing ESR lineshapes with above-mentioned shifted frequencies and linewidths as well as enhancement-suppression coefficients of magnetization evolution. These results are essential for the interpretation of experiments on longitudinal response in metal paramagnets, the latter being the source of important information on longitudinal electron relaxation; in particular, for extraction of information from longitudinal response experiments in the polymer phase of RbC60 fullende, where the obtained results describe the observed form of the ESR spectrum and the main features of the longitudinal response.  相似文献   

6.
重金属铜离子(Cu2+)与铅离子(Pb2+)污染对玉米叶片光谱的影响微弱、隐蔽而难于探测。研究中设置不同浓度Cu2+, Pb2+胁迫的玉米盆栽实验,测定了玉米叶片光谱、叶片中Cu2+, Pb2+含量与叶绿素相对含量,分析了Cu2+, Pb2+污染胁迫下玉米叶片光谱响应特征,并选取480~670与670~750 nm范围来进行分析,在光谱维中定义了光谱微分差信息熵指数与在频率域中通过谐波分析提取了前三次谐波振幅(c1, c2与c3)指数,并用所定义的指数探测分别受Cu2+, Pb2+胁迫玉米叶片光谱微弱差异。实验结果表明,在480~670与670~750 nm范围内,玉米叶片中重金属离子浓度越大,其光谱微分差信息熵就越大;在480~670 nm波段,谐波分解后第一谐波振幅c1与第二谐波振幅c2可用于识别Cu2+, Pb2+污染程度;在670~750 nm波段,第一谐波振幅c1、第二谐波振幅c2与第三谐波振幅c3可用于识别Cu2+污染程度,而c2则可以识别Pb2+污染程度,污染胁迫越大振幅越大。在480~670与670~750 nm波段内,光谱微分差信息熵与前三次谐波振幅可作为识别玉米受Cu2+, Pb2+污染胁迫程度的指数,从光谱维与频率域两种维度来识别玉米受Cu2+, Pb2+胁迫程度的方法可行,文中定义的两类指数可稳健、可靠地探测与识别玉米受Cu2+, Pb2+影响所产生的光谱微弱差异,研究结果对利用高光谱来探测植被受重金属污染胁迫程度具有一定的参考价值。  相似文献   

7.
The kinetic peculiarities of the thermal transformations of unsaturated metal carboxylates (transition metal acrylates and maleates as well as their cocrystallites) and properties of metal-polymer nanocomposites formed have been studied. The composition and structure of metal-containing precursors and the products of the thermolysis were identified by X-ray analysis, optical and electron microscopy, magnetic measurements, EXAFS, IR and mass spectroscopy. The thermal transformations of metal-containing monomers studied are the complex process including dehydration, solid phase polymerization, and thermolysis process which proceed at varied temperature ranges. At 200–300°C the rate of thermal decay can be described by first-order equations. The products of decompositions are nanometer-sized particles of metal or its oxides with a narrow size distribution (the mean particle diameter of 5–10nm) stabilized by the polymer matrix.  相似文献   

8.
Mechanoelectrical transformations are studied on models with different geometries and piezoelectric inclusion concentrations. The electrical signal intensity is found to decrease with increasing depth of a piezoelectric source relative to the position of an electrical signal detector. The electrical signal is the difference between signals from the unlikely charged surfaces of the piezoelectric source being deformed by an acoustic excitation wave. The spectral amplitudes of electrical signals coming from different regions of one sample and from identical (in composition) samples containing a large amount of piezoelectric inclusions differ considerably. This difference is due to the random orientation of the quartz piezoelectric axes relative to the electrical detector. Therefore, nondestructive mechanoelectrical techniques for inspection of heterogeneous materials with piezoelectric inclusions must use amplitude-independent criteria.  相似文献   

9.
Study of metal grains extracted from ordinary chondrite Tsarev L5 using Mössbauer spectroscopy with high velocity resolution was made for the first time. Three magnetic and one paramagnetic components were revealed in Mössbauer spectrum of extracted metal. These components were related to correspondent phases of Fe–Ni–Co alloy while only two magnetic components related to metal were revealed in the spectrum of bulk meteorite sample. The results obtained were in agreement with metallographic study of metal grains in meteorite Tsarev L5 which demonstrated the presence of four Fe(Ni, Co) phases.  相似文献   

10.
We consider the finite field dependent BRST (FFBRST) transformations in the context of Hamiltonian formulation using Batalin-Fradkin-Vilkovisky method. The non-trivial Jacobian of such transformations is calculated in extended phase space. The contribution from Jacobian can be written as exponential of some local functional of fields which can be added to the effective Hamiltonian of the system. Thus, FFBRST in Hamiltonian formulation with extended phase space also connects different effective theories. We establish this result with the help of two explicit examples. We also show that the FFBRST transformations is similar to the canonical transformations in the sector of Lagrange multiplier and its corresponding momenta.  相似文献   

11.
The M3–VV Auger-photoelectron coincidence spectroscopy (APECS) spectrum of Cu(100) and the L3–VV APECS spectra of Cu metal and CuOx/Cu surface are analyzed in detail. The narrowing and energy shift of the photoelectron line in the M3–VV APECS spectrum is well predicted by the present theory. The spectrum shows the presence of the M2–M3(V)–VV(V) decay in which a hole in the 4s band hops away prior to the decay of M3 hole. The analysis of the L3 photoelectron spectra of Cu metal measured in coincidence with the 3F or 1G Auger line raises a question concerning the presence of two different core–hole states upon the L3 level ionization recently proposed by Thurgate and Jiang [Surf. Sci. 466 (2000) L807]. The analysis of the L3–VV APECS spectrum of CuOx/Cu shows that the final-state charge–transfer interaction plays an important role in CuO.  相似文献   

12.
We propose a nonlinear ultrasonic technique by using the mixed-frequency signals excited Lamb waves to conduct micro-crack detection in thin plate structures. Simulation models of three-dimensional(3D) aluminum plates and composite laminates are established by ABAQUS software, where the aluminum plate contains buried crack and composite laminates comprises cohesive element whose thickness is zero to simulate delamination damage. The interactions between the S_0 mode Lamb wave and the buried micro-cracks of various dimensions are simulated by using the finite element method.Fourier frequency spectrum analysis is applied to the received time domain signal and fundamental frequency amplitudes,and sum and difference frequencies are extracted and simulated. Simulation results indicate that nonlinear Lamb waves have different sensitivities to various crack sizes. There is a positive correlation among crack length, height, and sum and difference frequency amplitudes for an aluminum plate, with both amplitudes decreasing as crack thickness increased, i.e.,nonlinear effect weakens as the micro-crack becomes thicker. The amplitudes of sum and difference frequency are positively correlated with the length and width of the zero-thickness cohesive element in the composite laminates. Furthermore,amplitude ratio change is investigated and it can be used as an effective tool to detect inner defects in thin 3D plates.  相似文献   

13.
本文利用一维耦合腔光子晶体,提出了一种声光可调谐平顶滤波器.该滤波器利用声光效应,通过改变超声波频率使一维耦合腔光子晶体透射谱的平顶滤波器的中心波长产生漂移,从而实现可调谐的滤波功能.基于传输矩阵法和声光效应理论,建立了这种平顶滤波器的理论模型;利用COMSOL软件,对平顶滤波器的矩形度、通带带宽、插入损耗、可调谐特性...  相似文献   

14.
The core/shell CdSeTe/ZnS quantum dots (QDs) with emission at 780–800 nm (1.55–1.60 eV) have been studied by means of photoluminescence (PL) and Raman scattering methods in the nonconjugated state and after conjugation to different antibodies (Ab): (i) mouse monoclonal [8C9] human papilloma virus Ab, anti-HPV 16-E7 Ab, (ii) mouse monoclonal [C1P5] human papilloma virus HPV16 E6+HPV18 E6 Ab, and (iii) pseudo rabies virus (PRV) Ab. The transformations of PL and Raman scattering spectra of QDs, stimulated by conjugated antibodies, have been revealed and discussed.The energy band diagram of core/shell CdSeTe/ZnS QDs has been designed that helps to analyze the PL spectra and their transformations at the bioconjugation. It is shown that the core in CdSeTe/ZnS QDs is complex and including the type II quantum well. The last fact permits to explain the nature of infrared (IR) optical transitions (1.55–1.60 eV) and the high energy PL band (1.88–1.94 eV) in the nonconjugated and bioconjugated QDs. A set of physical reasons has been analyzed with the aim to explain the transformation of PL spectra in bioconjugated QDs. Finally it is shown that two factors are responsible for the PL spectrum transformation at bioconjugation to charged antibodies: (i) the change of energy band profile in QDs and (ii) the shift of QD energy levels in the strong quantum confinement case. The effect of PL spectrum transformation is useful for the study of QD bioconjugation to specific antibodies and can be a powerful technique for early medical diagnostics.  相似文献   

15.
Xijun Fan  Kening Jia  Ying Liang  Dianmin Tong 《Optik》2012,123(16):1415-1420
In this paper we compared effects of relative carry-envelope phase (RCEP) of two-color few cycle pulses on propagation behavior and spectral property under the single-photon resonant condition in the dense and dilute lambda-type three-level atomic mediums. It is found that, in the dense medium, with propagation distance increasing, the compound pulse of the two-color few cycle pulses will split into two or three sub-pulses with different amplitudes and shapes, or does not split, and this is completely determined by value size of RCEP; with value of RCEP decreasing, range and strength of the spectrum (particularly the higher spectral components) increase obviously, the highest frequency is about eight times of the resonance frequency. In the corresponding dilute medium, effect of RCEP on propagating behavior and spectral property is much different from that in the dense medium; specially with value of RCEP decreasing, spectral strength increasing is evident but spectral range not, the highest frequency of the spectrum is only about two times of the resonance frequency.  相似文献   

16.
Simultaneous excitation of cavity resonance (CR) and surface plasmon resonance (SPR) was observed in the angular spectrum by substituting Ag/Al2O3/Ag layers for the metal film in a Kretschmann structure. Two reflective valleys, elicited respectively by CR and SPR, appeared at different positions in the angular spectrum. The former is the sum of enhanced transmission of CR and absorption of the metal, expressed in the reflection spectrum and extremely insensitive to the changes of the surface environment (refractive index). The latter behavior is like that when two metal films are stuck together: it has almost the same resonance depth and width, and is extremely sensitive to the changes of the surface environment. Moreover, two SPR peaks could be excited simultaneously at one angle but with different wavelengths in the frequency spectrum, which is not seen in traditional Kretschmann structures.  相似文献   

17.
We show that there exist enlarged stringy (α′→∞) symmetries for (evenG-parity) massive modes in the 10D fermionic string theory. These symmetries are derived from on-shell Ward identities corresponding to the decoupling of massive gauge states in the spectrum. In the generalized massive supersymmetric σ-model formalism, some symmetry transformations relate particles with different spins in the first order weak field approximation.  相似文献   

18.
A novel surface plasmon-polaritons (SPPs) refractive index sensor based on tooth-shaped metal–insulator–metal structure is proposed and numerically simulated by using the finite difference time domain method with perfectly matched layer absorbing boundary condition. Both analytic and simulated results show that the transmission minima wavelengths in the transmitted spectrum of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the transmission minima wavelengths in the transmitted spectrum. The resolution of refractive index of the nanometeric sensor can reach as high as 10? 6, given the wavelength resolution of 0.01 nm. It could be applied to high-resolution biological sensing.  相似文献   

19.
A two-dimensional (2D) experiment that correlates electron-nuclear double resonance (ENDOR) and electron spin-echo envelope modulation (ESEEM) frequencies, useful for unraveling and assigning ENDOR and ESEEM spectra from different paramagnetic centers with overlapping EPR spectra, is presented. The pulse sequence employed is similar to the Davies ENDOR experiment with the exception that the two-pulse echo detection is replaced by a stimulated echo detection in order to enhance the resolution in the ESEEM dimension. The two-dimensional data set is acquired by measuring the ENDOR spectrum as a function of the time interval T between the last two microwave pulses of the stimulated echo detection scheme. This produces a series of ENDOR spectra with amplitudes that are modulated with T. Fourier transformation (FT) with respect to T then generates a 2D spectrum with cross peaks connecting spectral lines of the ESEEM and ENDOR spectra that belong to the same paramagnetic center. Projections along the vertical and horizontal axes give the three-pulse FT-ESEEM and ENDOR spectra, respectively. The feasibility of the experiment was tested by simulating 2D ENDOR-ESEEM correlation spectra of a system consisting of an electron spin (S = (1/2)) coupled to two nuclei (I(1) = I(2) = (1/2)), taking into account experimental conditions such as pulse durations and off-resonance irradiation frequencies. The experiment is demonstrated on a single crystal of Cu(2+) doped l-histidine (Cu-His), containing two symmetrically related Cu(2+) sites that at an arbitrary orientation exhibit overlapping ESEEM and ENDOR spectra. While the ESEEM spectrum is relatively simple and arises primarily from one weakly coupled (14)N, the ENDOR spectrum is very crowded due to contributions from two nonequivalent nitrogens, two chlorides, and a relatively large number of protons. The simple ESEEM projection of the 2D ENDOR-ESEEM correlation spectrum is then used to disentangle the ENDOR spectrum and resolve two sets of lines corresponding to the different sites. Copyright 2000 Academic Press.  相似文献   

20.
Vibrational spectra of acetylene chemisorbed on Cu(111), Ni(110) and Pd(110) at 110–120 K were measured using electron energy loss spectroscopy. Loss peaks were assigned to vibrational modes of the non-dissociatively adsorbed molecules with the aid of the corresponding C2D2 spectra. The spectra show that the molecules undergo significant rehybridisation on adsorption. Comparisons are made with the spectra of acetylene adsorbed on a range of other transition metal surfaces at low temperature. Taking into account these and earlier literature results, two distinct patterns of spectra are observed (Type A and Type B) for specular spectra. The Cu(111) spectrum is classified as Type A while the Ni(110) and Pd(110) spectra are classified as Type B. Suggestions are made for the structures of the surface species corresponding to the two spectral types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号