首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel rhodamine B (RB) derivatives bearing mono and bis-boronic acid groups were investigated as Hg2+ selective fluorescent and colorimetric sensors. These derivatives are first examples of reversible fluorescent chemosensors for Hg2+ which utilized boronic acid groups as binding sites. Two new RB-boronic acid derivatives displayed selective ‘Off-On’-type fluorescent enhancements and distinct color changes with Hg2+. Selective fluorescent enhancement of two rhodamine derivatives was attributed to ring opening from the spirolactam (nonfluorescent) to ring-opened amide (fluorescent).  相似文献   

2.
Selective metal ion detection is highly desired in fluorometric analysis. In the current study a curcumin-based fluorescence-on probe/[(2E,6E)-2,6-bis(4-(dimethylamino) benzylidene) cyclohexanone]/probe was designed for the removal of one of the most toxic heavy metal ion i.e. Hg2+. The structure of the probe was confirmed by FTIR and 1H NMR spectroscopic analysis displaying distinctive peaks. The complex formation between probe and Hg2+ ion was also studied by density functional theory to support the experimental results. Chelation enhanced fluorescence was observed upon interaction with Hg2+ ion. Different parameters like pH, effect of mercury ion concentration, contact time, interference study and effect of probe concentration on the fluorescence enhancement were also investigated. A rapid response was detected for Hg2+ ion with limit of detection and quantification as 2.7 nM and 3 nM respectively with association constant of 1 × 1011 M?2. The probe displayed maximum fluorescence intensity at physiological pH. The results showed that the synthesized probe can be employed as an excellent probe for the detection and quantification of Hg2+ ions in aqueous samples with high selectivity and sensitivity due to its higher binding energy and larger charge transferring ability.  相似文献   

3.
A low‐molecular‐weight fluorescent probe 1 (M.W. = 238.24) based on aurone was synthesized, and its application in fluorescent detection of Hg2+ in aqueous solution and living cells was reported. It exhibited an “on–off” fluorescent response toward Hg2+ in aqueous solution. Both the color and fluorescence changes of the probe were remarkably specific for Hg2+ in the presence of other common metal ions, satisfying the selective requirements for biomedical and environmental monitoring application. The probe has been applied in direct measurement of Hg2+ content in river water samples and imaging of Hg2+ in living cells, which further indicates the potential application values in environmental and biological systems.  相似文献   

4.
A new fluorescein-based chemodosimeter (II) for Hg2+ ion was designed and synthesized, and it displayed excellent selective and sensitive toward Hg2+ ion over other commonly metal ions in aqueous media. II was a colorless, non-fluorescent compound. Upon addition of Hg2+ to the solution of II, the thiosemicarbazide moiety of II would undergo an irreversible desulfurization reaction to form its corresponding oxadiazole (IV), a colorful and fluorescent product. During this process, the spirocyclic ring of II was opened, causing instantaneous development of visible color and strong fluorescence emission in the range of 500-600 nm. Based on the above mechanism, a fluorogenic Hg2+-selective chemodosimeter was developed. The fluorescence increase is linearly with Hg2+ concentration up to 1.0 μmol L−1 with a detection limit of 8.5 × 10−10 mol L−1 (3σ). Compared with the rhodamine-type chemodosimeter, II is more stable in aqueous media and exhibits higher sensitivity toward Hg2+. The findings suggest that II will serve as a practical chemodosimeter for rapid detection of Hg2+ concentrations in realistic media.  相似文献   

5.
Herein, we report the highly selective binding of Zn2+ ion by the salicylaldimine based Schiff base chromogenic receptor 1 [(N,N′-bis (salicylidine)-o-phenylenediamine]. Receptor 1 senses Zn2+ ion in aqueous medium by colorimetric and fluorescent response in the presence of other metal ions like Pb2+, Hg2+, Sn2+, Cd2+. Receptor 1 on binding with Zn2+ ion exhibits fluorescence enhancement which is due to the inhibition of the (ESIPT) mechanism.  相似文献   

6.
Quinolin-8-ol p-[10′,15′,20′-triphenyl-5′-porphyrinyl]benzoate (1) was synthesized for the first time and developed as a ratiometric fluorescent chemosensor for recognition of Hg2+ ions in aqueous ethanol with high selectivity. The 1–Hg2+ complexation quenches the fluorescence of porphyrin at 646 nm and induces a new fluorescent enhancement at 603 nm. The fluorescent response of 1 towards Hg2+ seems to be caused by the binding of Hg2+ ion with the quinoline moiety, which was confirmed by the absorption spectra and 1H NMR spectrum. The fluorescence response fits a Hill coefficient of 1 (1.0308), indicating the formation of a 1:1 stoichiometry for the 1–Hg2+ complex. The analytical performance characteristics of the chemosensor were investigated. The sensor shows a linear response toward Hg2+ in the concentration range of 3 × 10−7 to 2 × 10−5 M with a limit of detection of 2.2 × 10−8 M. Chemosensor 1 shows excellent selectivity to Hg2+ over transition metal cations except Cu2+, which quenches the fluorescence of 1 to some extent when it exists at equal molar concentration. Moreover, the chemosensor are pH-independent in 5.0–9.0 and show excellent selectivity for Hg2+ over transition metal cations.  相似文献   

7.
Highly selective detection of Hg2+ ion has been achieved using the push–pull-type purine nucleoside-based fluorescent sensor L1. The sensor L1 incorporating aza-18-crown-6 at C6 position of purine nucleoside, is highly sensitive and selective toward Hg2+ ion in CH3CN–H2O mixture (92/8, v/v). The detection limit for the fluorescent sensor L1 toward Hg2+ ion is 7.8 × 10−8.  相似文献   

8.
New rhodamine derivatives bearing urea group have been synthesized for the detection of metal ions. Especially, the dimeric system 2 displayed a selective fluorescent enhancement and colorimetric change upon the addition of Hg2+, in which the spirolactam (nonfluorescent) to ring opened amide (fluorescent) process was utilized. The association constant of 2 with Hg2+ was calculated as 3.2 × 105 M−1.  相似文献   

9.
Shi L  Song W  Li Y  Li DW  Swanick KN  Ding Z  Long YT 《Talanta》2011,84(3):900-904
A new sensing molecule 8-hydroxyquinoline ferrocenoate (Fc-Q) which combines ferrocene and 8-hydroxyquinoline moieties was synthesized and applied as a multi-channel sensor for the detection of Hg2+ ion. Fc-Q can coordinate with Hg2+ to give colorimetric, fluorescent and electrochemical responses. Upon complexation with Hg2+ ion, the characteristic absorption peak is red-shifted (Δλ = 45 nm), the fluorescent intensity is quenched at 303 nm, and the oxidation peak is cathodic shifted (ΔE1/2 = −149 mV). Quantitatively analyzed Hg2+ ions at the range of ppb level could be achieved by electrochemical response. For the practical application of sensing Hg2+ in real world water, Fc-Q modified screen-printed carbon electrodes were obtained for facile, sensitive, and on-site analysis of Hg2+.  相似文献   

10.
A rhodamine spirolactam derivative (1) bearing a hydrophilic carboxylic acid group is developed as a fluorescent chemodosimeter for bivalent mercury ions (Hg2+) in 100% aqueous solution. It exhibits a highly sensitive “turn-on” fluorescent response toward Hg2+ with a 42-fold fluorescence intensity enhancement under 1 equiv. of Hg2+ added. The chemodosimeter can be applied to the quantification of Hg2+ with a linear range covering from 3.0 × 10−7 to 1.0 × 10−5 M and a detection limit of 9.7 × 10−8 M. Most importantly, the fluorescence changes of the chemodosimeter are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of 1 towards Hg2+ is pH independent in neutral condition (pH 5.0–8.0) and the response is fast (response time less than 3 min). Furthermore, the ring-opening mechanism of the rhodamine spirolactam induced by Hg2+ was supported by NMR, MS, and DFT theoretical calculations. In addition, the proposed chemodosimeter has been used to detect Hg2+ in water samples and image Hg2+ in living cells with satisfying results.  相似文献   

11.
Four cone p-tert-butylcalix[4]arene-1,3-monothiacrown-5 ligands each with two N-(X)sulfonyl carbamoylmethoxy side arms are synthesized for comparison with analogs having only oxygen heteroatoms in the crown ether ring. Solvent extractions of hard alkali metal and alkaline earth metal cations, intermediate Pb2+, and soft Hg2+ from aqueous solutions into chloroform by these ligands are utilized to probe the effects of sulfur replacement in the crown ether ring on metal ion complexation.  相似文献   

12.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

13.

A fluorescent and colorimetric sensor based on rhodamine 6 g (RD6g) was designed, synthesized, and characterized using microwave irradiation. The sensing behavior of this compound was studied by UV–visible and fluorescence spectroscopy. Sensor RD6g exhibits a high selectivity and an excellent sensitivity and is a dual-responsive colorimetric and fluorescent Hg2+-specific sensor in aqueous buffer solution. Mercury ions give rise to the development of a very fluorescent ring-open amide spirolactam system. The detection limit for Hg2+ was found to be 1.2?×?10?8 M. The binding ratio of RD6g-Hg2+ complex was determined to be 1:1 according to the Job’s plot. The reversibility of RD6g?Hg2+ complex has been achieved with CN? anions. The test strip based on RD6g was developed, which could be used as a suitable and methodical Hg2+ test kit.

  相似文献   

14.
In this work, a reusable bifunctional fluorescent sensor for simultaneous detection and separation of trace Hg2+ in water and serum, which contains a naphthalimide derivative of 2,6-bis(aminomethyl)pyridine covalently grafted to the surface of silica particles, was developed. Meanwhile, the fluorescence characteristics and the adsorbent properties of the sensor were investigated in detail. This sensor showed a very good linearity (correlation coefficient of R2 = 0.9991) in the range 0.1-1 μM of Hg2+ with detection limits lower than 6.8 × 10−9 M. It can also be used as an adsorbent for the removal of mercuric ions from the contaminated aqueous solution. The regeneration of this sensor is very simple, only by modulating the pH value of the aqueous solution. It can be reused at least four cycles. In addition, the present approach has the advantages of rapidity, simplicity, and low cost. We believe that this approach may serve as a foundation for the preparation of practical fluorescent sensor for the rapid detection of Hg2+ in aqueous biological and environmental samples.  相似文献   

15.
李广科a  b  刘敏a  b  杨国强a  陈传峰  a  黄志镗  a 《中国化学》2008,26(8):1440-1446
我们方便地合成了上沿修饰四丹磺酰胺基团的杯[4]芳烃衍生物1,发现该化合物在含50%水的乙腈中显示出对汞离子高选择性和灵敏性的识别作用,竞争实验表明多数金属离子对其检测干扰较小。机理研究结果表明荧光萃灭源于由丹磺酰胺基团到汞离子的光致电子转移过程。另外,通过研究1和1-Hg2+的荧光衰减实验,以及对比双丹磺酰胺杯[4]芳烃2和单丹磺酰胺杯[4]芳烃3对汞离子的识别作用,发现化合物1的四丹磺酰胺基团具有很好的预组织和协同作用。化合物1对汞离子的检测限为3.41×10-6 mol·L-1,这可以使1成为一个潜在的汞离子荧光化学传感器。  相似文献   

16.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

17.
A simple fluorescent probe, which contains rhodamine and aminoquinoline moieties, was designed and prepared for selective detection of Hg2+ in acetonitrile. RbQ exhibited high selectivity and sensitivity toward Hg2+ over other common metal ions. The recognition of RbQ toward Hg2+ can be detected by fluorescence spectra, absorption spectra, and even by naked eyes. The binding ratio of the RbQ–Hg2+ complex was found to be 1:1 according to Job plot experiment, and the limit of detection was 1.05×10−7 M. Moreover, the prepared complex RbQ–Zn2+ (RbQZ) could detect Hg2+ in a ratiometric way and showed lower limit of detection (2.95×10−8 M) than RbQ in the same condition. Finally, we also demonstrated that the aminoquinoline–zinc complex could be served as a new and effective FRET donor for rhodamine derivatives.  相似文献   

18.
The colorimetric behavior of an azobenzene-based dye containing dithiaazadioxo ring for Hg2+-detection was investigated in diverse solvents. The mercury specific ligand shows hypsochromic changes in pure and aqueous MeCN upon Hg2+-binding while strong bathochromic shift was observed in chloroform. In both solvent systems, dithiaazadioxo ring is revealed to be indispensable to the selective detection of mercury ion, and several binding schemes in different solvents were proposed on the selective Hg2+ binding. Grafted on cationic polymer (PEI) through amide coupling, it was observed that the ligand basically maintains the Hg2+ detection capability, but substantially hindered by amine moieties in PEI.  相似文献   

19.
Two new acridine derivatives bearing azacrown or azathiacrown ligand were synthesized as fluorescent chemosensors for Hg2+ and Cd2+ in aqueous solution. Compounds 1 and 2 displayed selective CHEF (chelation enhanced fluorescence) effects with Hg2+ or Cd2+ among the metal ions examined. The practical use of these probes was demonstrated by their applications to the detection of Hg2+ and Cd2+ ions in mammalian cells.  相似文献   

20.
Guha S  Lohar S  Hauli I  Mukhopadhyay SK  Das D 《Talanta》2011,85(3):1658-1664
An efficient Hg2+ selective fluorescent probe (vanillin azo coumarin, VAC) was synthesized by blending vanillin with coumarin. VAC and its Hg2+ complex were well characterized by different spectroscopic techniques like 1H NMR, QTOF-MS ES+, FTIR and elemental analysis as well. VAC could detect up to 1.25 μM Hg2+ in aqueous methanol solution through fluorescence enhancement. The method was linear up to 16 μM of Hg2+. Negative interferences from Cu2+, Ni2+, Fe3+, and Zn2+ were eliminated using EDTA as a masking agent. VAC showed a strong binding to Hg2+ ion as evident from its binding constant value (2.2 × 105), estimated using Benesi-Hildebrand equation. Mercuration assisted restricted rotation of the vanillin moiety and inhibited photoinduced electron transfer from the O, N-donor sites to the coumarin unit are responsible for the enhancement of fluorescence upon mercuration of VAC. VAC was used for imaging the accumulation of Hg2+ ions in Candida albicans cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号