首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Absolute configurations of seven bioactive natural Griseusins were investigated. Optical rotation and electronic circular dichroism were calculated at the B3LYP/6-311++G(2d,p)//PCM/B3LYP/6-311++G(2d,p) or other levels in the gas phase and/or in solution. Computational results exhibited that the early reported absolute configuration of four among the seven may not be the best structures after comparing the computed optical rotations, electron circular dichroisms to the experimental data. Then four favorable structures are suggested based on the comparison of predicted optical rotations and electronic circular dichroisms to the experimental results. It is the first time to find that the different position of carbonyl group on aromatic ring (planar structure changes) in Griseusins can lead to the ECD curve reversed instead of the stereogenic center changes. In traditional opinion, ECD curve reversal happens only when stereogenic center configuration reverses, such as from AC of (R) to (S).  相似文献   

2.
The absolute configuration of the (+)-1,1-dimethyl-2-phenylethyl phenyl sulfoxide is determined to be (R), using three different chiroptical spectroscopic methods, namely vibrational circular dichroism (VCD), electronic circular dichroism (ECD) and specific rotation. Four solution conformations are identified for 1,1-dimethyl-2-phenylethyl phenyl sulfoxide. In each of the methods used, experimental data for the enantiomers of 1,1-dimethyl-2-phenylethyl phenyl sulfoxide were measured in the solution phase and concomitant quantum mechanical calculations of corresponding properties were carried out using density functional theory with B3LYP functional and 6-31G* and 6-31+G basis sets. Additional VCD and ECD calculations were also undertaken with 6-311G(2d,2p) basis set. A comparison of theoretically predicted data with the corresponding experimental data has allowed us to elucidate the absolute configuration and predominant conformations of (+)-1,1-dimethyl-2-phenylethyl phenyl sulfoxide.  相似文献   

3.
采用量子化学密度泛函理论(DFT)在B3LYP/6-311++G二水平上对秋水仙碱四个立体异构体分子几何构型进行了优化,在优化的基础上进行了振动圆二色谱(VCD),紫外-可见光谱(UV-Vis)和电子圆二色谱(ECD)研究.为模拟真实条件,以水为溶剂,计算其对分子电子结构和光谱性质的影响.研究结果表明:秋水仙碱四个立体...  相似文献   

4.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

5.
The full conformational space was explored for an achiral and two chiral beta-peptide models: namely For-beta-Ala-NH2, For-beta-Abu-NH2, and For-beta-Aib-NH2. Stability and conformational properties of all three model systems were computed at different levels of theory: RHF/3-21G, B3LYP/6-311++G(d,p)//RHF/3-21G, B3LYP/6-311++G(d,p), MP2//B3LYP/6-311++G(d,p), CCSD//B3LYP/6-311++G(d,p), and CCSD(T)//B3LYP/6-311++G(d,p). In addition, ab initio E = E(phi, micro, psi) potential energy hypersurfaces of all three models were determined, and their topologies were analyzed to determine the inherent flexibility properties of these beta-peptide models. Fewer points were found and assigned than expected on the basis of Multidimensional Conformational Analysis (MDCA). Furthermore, it has been demonstrated, that the four-dimensional surface, E = E(phi, mu, psi), can be reduced into a three-dimensional one: E = E[phi, f(phi), psi]. This reduction of dimensionality of freedom of motion suggests that beta-peptides are less flexible than one would have thought. This agrees with experimental data published on the conformational properties of peptides composed of beta-amino acid residues.  相似文献   

6.
Six stationary points of alaninamide have been located on the potential surface energy (PES) at the B3LYP/6‐311++G(2d,2p) level of theory both in the gas phase and in aqueous solution. In the aqueous solution, to take the water solvent effect into account, the polarizable continuum model (PCM) method has been used. Accurate geometric structures and their relative stabilities have been investigated. The results show that the intramolecular hydrogen bond plays a very important role in stabilizing the global minimum of the alaninamide. Moreover, the consistent result in relative energy using high‐level computations, including the MP2 and MP3 methods with the same basis set [6‐311++G(2d,2p)], indicates that the B3LYP/6‐311++G(d,p) level may be applied to the analogue system. More importantly, the optical rotation of the optimized conformers (both in the gas phase and in aqueous solution) of alaninamide have been calculated using the density functional theory (DFT) and Hartree–Fock (HF) method at various basis sets (6‐31+G*, 6‐311++G(d,p), 6‐311++G(2d,2p) and aug‐cc‐pvdz). The results show that the selection of the computation method and the basis set in calculation has great influence on the results of the optical rotations. The reliability of the HF method is less than that of DFT, and selecting the basis set of 6‐311++G(2d,2p) and aug‐cc‐pvDZ produces relative reliable results. Analysis of the computational results of the structure parameters and the optical rotations yields the conclusion that just the helixes in molecules caused the chiral molecules to be optical active. The Boltzmann equilibrium distributions for the six conformers (both in the gas phase and in the aqueous solution) are also carried out. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

7.
8.
The multidimensional Conformational Potential Energy Hypersurface (PEHS) of cyclotrisarcosyl was comprehensively investigated at the DFT (B3LYP/6-31G(d), B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p)), levels of theory. The equilibrium structures, their relative stability, and the Transition State (TS) structures involved in the conformational interconversion pathways were analyzed. Aug-cc-pVTZ//B3LYP/6-311++G(d,p) and MP2/6-31G(d)//B3LYP/6-311++G(d,p) single point calculations predict a symmetric cis-cis-cis crown conformation as the energetically preferred form for this compound, which is in agreement with the experimental data. The conformational interconversion between the global minimum and the twist form requires 20.88 kcal mol-1 at the MP2/6-31G(d)//B3LYP/6-311++G(d,p) level of theory. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of this cyclic tripeptide, describing the conformations as well as the conformational interconversion processes in this hypersurface. In addition, a comparative analysis between the conformational behaviors of cyclotrisarcosyl with that previously reported for cyclotriglycine was carried out  相似文献   

9.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

10.
A theoretical quantum chemical study of the intramolecular hydrogen bonding interactions in 8-mercaptoquinoline has been carried out. Special attention has been paid to the rotation of S-H bond and intramolecular proton-transfer reactions. Therewith, the B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p), MPW1K/6-311++G(d,p), MPW1K/6-31+G(2d,2p), BH&HLYP/6-311++G(d,p), and G96LYP/6-311++G(d,p) methods have been used. By means of the Onsager and PCM reaction field methods, the effects of solvent on hydrogen-bond energies, conformational equilibria, rotational barriers, and tautomerism in aqueous solution have been studied. These simulations were done at the MPW1K/6-311++G(d,p) and B3LYP/6-311++G(d,p) levels. Natural-bond orbital analysis has been performed to study the intramolecular hydrogen bond (IHB) in the gaseous phase and in aqueous medium. The stability of forms under consideration in solution does not coincide with that in the gaseous phase, underlining a great importance of the electrostatic influence of solvent. Double-proton transfer in the prototropic tautomerization of 8-mercaptoquinoline, one water molecule complex in the gaseous phase and in solution, has been systematically studied. The double-proton transfer occurs concertedly and synchronously. The water-assisted tautomerization is kinetically less, but thermodynamically more favorable, compared to that of the single-proton transfer. As in the case with single-proton transfer, for water-assisted reaction, the tautomerization energies and barrier heights decrease with the increase in dielectric constant, which implies faster and more complete tautomerization of 8-mercaptoquinoline in a polar solvent.  相似文献   

11.
The absolute configurations of 2-cyclohexenone cis-diol metabolites resulting from the biotransformation of the corresponding phenols have been determined by comparison of their experimental and calculated circular dichroism spectra (TDDFT at the PCM/B2LYP/Aug-cc-pVTZ level), optical rotations (calculated at the PCM/B3LYP/Aug-cc-pVTZ level) and by stereochemical correlation. It is found that circular dichroism spectra and optical rotations of 2-cyclohexenone derivatives are strongly dependent on the ring conformation (M or P sofa S(5) or half-chair), enone non-planarity and the nature and positions of the hydroxy and alkyl substituents. The effect of non-planarity of the enone chromophore, including the distortion of the C=C bond, is determined for the model structures by TDDFT calculations at the PCM/B2LYP/6-311++G(2d,2p) level. Non-planarity of the C=C bond in the enone chromophore is commonly encountered in 2-cyclohexenone derivatives and it is a source of significant rotatory strength contribution to the electronic circular dichroism spectra. It is shown that the two lowest-energy transitions in acrolein and 2-cyclohexenone and its derivatives are n(C=O)-π(C=O)* and π(C=C)-π(C=O)*, as expected, while the shorter-wavelength (below 200 nm) transitions are of more complex nature. In 2-cyclohexenone and its alkyl derivatives it is predominantly a mixture of π(C=C)-π(C=C)* and π(C=C)-σ* transitions, whereas the presence of hydroxy substituent results in a dominant contribution due to the n(OH)-π(C=O)* transition. A generalized model for correlation of the CD spectra of 2-cyclohexenones with their structures is presented.  相似文献   

12.
Thermodynamic functions (enthalpy, entropy, free energy, and heat capacity) of azacycloalkan-2-ones with ring sizes n = 4–8 in the ideal gas state are calculated by means of quantum chemistry and statistical physics, using an anharmonic approximation in the range of 298–1500 K with allowance for all known conformers and optical isomers. Equilibrium structures and total energies of lactams are calculated using the B3LYP/6-311++G(3df, 3pd), B3LYP/aug-cc-pVQZ, and MP2/6-311++G(3df, 3pd) methods, and the anharmonic frequencies of the fundamental vibrations of all the investigated structures were found via B3LYP/6-311++G(3df, 3pd).  相似文献   

13.
The enantiomers of 3,3,3',3'-tetramethyl-1,1'-spirobi[3 H,2,1]benzoxaselenole have been separated on a chiral preparative chromatographic column. The experimental vibrational circular dichroism (VCD) spectra have been obtained for both enantiomers in CH(2)Cl(2). The theoretical VCD spectra have been obtained by means of density functional theoretical calculations with the B3 LYP density functional. From a comparison of experimental and theoretical VCD spectra, the absolute configuration of an enantiomer with positive specific rotation in CH(2)Cl(2) at 589 nm is determined to be R. This conclusion has been verified by comparing results of experimental optical rotatory dispersion (ORD) and electronic circular dichroism (ECD) to predictions of the same properties using the B3 LYP functional for the title compound.  相似文献   

14.
The inversion and rotation mechanisms for the isomerization of Feringa’s bithioxanthenes existing in two conformations, up/up and up/down, have been calculated at the B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels. The inversion mechanism that maintains the double bond nature of the central bond is a classical one but the rotation mechanisms that break the double bond to form a biradical needs to explore the singlet and triplet states. To do this we have removed the four fused phenyl rings of bithioxanthene and calculated at the CASSCF and CASPT2 levels bis(4H-thiopyran) proving that B3LYP calculations yield reasonable results for the rotation barriers.  相似文献   

15.
The gallium chloride (GaCl(3))-catalyzed ring-closing metathesis reaction mechanism of N-2,3-butadienyl-2-propynyl-1-amine has been studied at the Becke three-parameter hybrid functional combined with Lee-Yang-Parr correlation functional (B3LYP)/6-31G(d), B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p)//B3LYP/ 6-31G(d) and the second-order M?ller-Plesset perturbation (MP2)/6-311++G(d,p)//B3LYP/6-31+G(d,p) levels. It was found that the final metathesis product can be yielded via a three-membered or four-membered ring mechanism. The three-membered ring pathway is favorable due to its low energy barrier at the rate determining step. The whole reaction is stepwise and strongly exothermic.  相似文献   

16.
The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law.  相似文献   

17.
The conformational analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule (abbreviated as 68DIP) was performed by using B3LYP/6-31G(d) level of theory to find the most stable form. Two staggered stable conformers were observed on the torsional potential energy surface. The equilibrium geometry, bonding features and vibrational frequencies of 68DIP have been investigated by using the DFT (B3LYP) and HF methods for the lowest energy conformer. The first order hyperpolarizability (β(total)) of this molecular system and related properties (β, μ, <α> and Δα) are calculated using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H?N intramolecular hydrogen-bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies E((2)) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and electronic properties, such as HOMO, LUMO energies, excitation energies and wavelength were performed by TD-DFT/B3LYP, CIS and TD-HF methods by using 6-311++G(d,p) basis set. Finally, the calculation results were applied to simulated infrared spectra of the title compound which show good agreement with observed spectra.  相似文献   

18.
运用B3LYP和MP2方法在6-311++G(d,p)基组水平上, 对H2CO-XY(XY=F2、Cl2、Br2、ClF、BrF、BrCl)卤键体系进行构型全优化, 得到了O…X—Y型卤键复合物. 结果表明, MP2/6-311++G(d,p)计算结果与实验值较吻合. 并在MP2水平下计算了分子间的相互作用能, 用完全均衡校正CP(counterpoise procedure)方法对基函数重叠误差(BSSE)进行了校正. 利用电子密度拓扑分析方法对卤键复合物的电子密度拓扑性质进行了分析研究.  相似文献   

19.
Accurate geometries structures and total energies have been determined for the conformers of cyclo(L-Pro-Gly), cyclo(L-Ala-L-Ala), and cyclo(L-Pro-Ala) in the gaseous phase, using HF and B3LYP correlation methods at 6−31++G(d), 6−311++G(d, p), 6−311++G(2d, 2p) and aug-cc-pvdz basis sets. High level computations MP2 with 6−311++G(2d, 2p) basis set indicate that the relative stabilities of the available conformers can be determined correctly at the B3LYP/6−311++g(2d, 2p) level of theory. We have also described the implementation of DFT and HF theory for calculations of the optical rotation at 589.3 nm. In L-Ala-L-Ala, and L-Pro-Ala molecules, they have two chiral C (C*), so we discuss the different effect of two chiral C to optical activity of cydo(L-Pro-Gly), cyclo(L-Ala-L-Ala), and cyclo(L-Pro-Ala).  相似文献   

20.
Energies of a series of 4-substituted 1-oxybicyclo[2.2.2]octan-1-yloxy radicals with 18 various substituents were calculated within the framework of the DFT theory at the levels UB3LYP/6-311+G(d,p)//UB3LYP/6-311+G(d,p) and UB3LYP/6-311++G(2df,p)//UB3LYP/6-311+G(d,p) and compared with similar series of the parent alcohols, their deprotonated and protonated forms calculated at the levels B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p) and B3LYP/6-311++G(2df,p)//B3LYP/6-311+G(d,p). The two levels are of the same performance and both are sufficient for molecules of this type according to comparison with scarce experimental gas-phase acidities and basicities. The substituent effects were analyzed in terms of isodesmic equations. In addition to strong dependence on the substituent inductive effect, a slight dependence on the electronegativity of the first atom of the substituent was proven in certain cases. In all aspects, there is no qualitative difference between the effects on radicals and on similar closed shell species. Radicals behave as slightly electron deficient; the substituent effect is weaker than that on the ions but stronger than on neutral molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号