首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary  Transient stresses around two parallel cracks in an infinite elastic medium are investigated in the present paper. The shape of the cracks is assumed to be square. Incoming shock stress waves impinge upon the two cracks normal to tzheir surfaces. The mixed boundary value equations with respect to stresses and displacements are reduced to two sets of dual integral equations in the Laplace transform domain using the Fourier transform technique. These equations are solved by expanding the differences in the crack surface displacements in a double series of a function that is equal to zero outside the cracks. Unknown coefficients in the series are calculated using the Schmidt method. Stress intensity factors defined in the Laplace transform domain are inverted numerically to the physical space. Numerical calculations are carried out for transient dynamic stress intensity factors under the assumption that the shape of the upper crack is identical to that of the lower crack. Received 2 February 2000; accepted for publication 10 May 2000  相似文献   

2.
This is Part I of the work on a two-dimensional analysis of thermal and electric fields of a thermopiezoelectric solid damaged by cracks. It deals with finding the singular crack tip behavior for the temperature, heat flow, displacements, electric potential, stresses and electric displacements. By application of Fourier transformations and the extended Stroh formalism, the problem is reduced to a pair of dual integral equations for the temperature field with the aid of an auxiliary function. The electroelastic field is governed by another pair of dual integral equations. The inverse square root singularity is found for the heat flow field while the logarithmic singularity prevailed for the electroelastic field regardless of whether the crack lies in a homogeneous piezoelectric solid or at an interface of two dissimilar piezoelectric materials. Results are given for the energy release rate and a finite length crack oriented at an arbitrarily angle with reference to the external disturbances. Part II of this paper considers the modelling of a piezoelectric material containing microcracks. A representative cracked area element is used to obtain the effective conductivity and electroelastic modulus. Numerical results are given for a peizoelectric Bati O3 ceramic with cracks.  相似文献   

3.
The basic solution of two parallel mode-I permeable cracks in functionally graded piezoelectric materials was studied in this paper using the generalized Almansi’s theorem. To make the analysis tractable, it was assumed that the shear modulus varies exponentially along the horizontal axis parallel to the crack. The problem was formulated through a Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the gradient of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.  相似文献   

4.
In this paper, the stress-intensity factors for two collinear cracks in a composite bonded by an isotropic and an anisotropic half-plane were calculated. The cracks are paralell to the interface, and the crack surfaces are loaded by uniform shear stresses. By using Fourier transform, the mixed boundary value problem is reduced to a set of singular integral equations. For solving the integral equations, the crack surface displacements are expanded in triangular series and the unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors for the cracks in the boron-fibre plastics and aluminium joined composite and in carbon-fibre reinforced plastics were calculated numerically.  相似文献   

5.
The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.  相似文献   

6.
本文研究了由各向同性和各向异性半无限接合而成的复合材料中的应力强度因子问题,在复合材料的接合面附近处具有与接合面平行且共线的两个Griffith裂纹,裂纹面上作用有剪应力,本文利用付利叶变换将混合边值问题归毕为求解奇异积分方程问题,为求解这些方程,将裂纹面上,下的位移差展成级数,并满足理解纹面外侧边界条件,级数中的待定系数利用裂纹面内的边界条件和施密特方法求得,本文对硼纤维塑料和铝板接合的复合材料  相似文献   

7.
Shell equations are constructed in orthogonal curvilinear coordinates using approximations of stresses and displacements by Legendre polynomials. The order of the constructed system of differential equations is independent of whether stresses and displacements or their combination are specified on the shell surfaces, which provides the correct formulation of the surface conditions in terms of both displacements and stresses. This allows the system of differential equations of laminated shells to be constructed using matching conditions for displacements and stresses on the contact surfaces. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 179–190, May–June, 2007.  相似文献   

8.
In this paper, the interaction of two parallel Mode-I limited-permeable cracks in a functionally graded piezoelectric material was investigated by using the generalized Almansi's theorem. In the analysis, the electric permittivity of the air inside the crack was considered. The problem was formulated through Fourier transform into two pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surface. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. The solution of the present paper shows that the singular stresses and the singular electric displacements at the crack tips in functionally graded piezoelectric materials carry the same forms as those in homogeneous piezoelectric materials; however, the magnitudes of intensity factors depend on the electric permittivity of the air inside the crack and the gradient parameter of functionally graded piezoelectric material properties. It was also revealed that the crack shielding effect is also present in functionally graded piezoelectric materials.  相似文献   

9.
In this paper, the basic solutions of two parallel mode-I cracks or four parallel mode-I cracks in the piezoelectric materials were investigated by means of the Schmidt method for the limited-permeable electric boundary conditions. The electric permittivity of air in the crack was considered. Through the Fourier transform, the problems can be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces, not the dislocation density functions. To solve the dual integral equations, the jumps of the displacements across the crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the effects of the distance between two parallel cracks, the distance between two collinear cracks and the electric boundary conditions on the stress and the electric intensity factors in the piezoelectric materials are analyzed. These results can be used for the strength evaluation of the piezoelectric materials with multi-cracks. The crack shielding effect is also present in the piezoelectric materials.  相似文献   

10.
The solutions of a limited-permeable crack (case I) or two collinear limited-permeable cracks (case II) in piezoelectric/piezomagnetic materials subjected to a uniform tension loading were investigated in this paper using the generalized Almansi’s theorem. At the same time, the electric permittivity and the magnetic permeability of air in crack were firstly considered. Through the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables were jumps of displacements across crack surfaces, not the dislocation density functions or the complex variable functions. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials to obtain the relations among electric displacement intensity factors, magnetic flux intensity factors and stress intensity factors at crack tips.  相似文献   

11.
Integral relations between three-dimensional dynamic displacements (stresses) in an infinite elastic body with arbitrarily located plane cracks and discontinuities in the displacements of the opposite crack faces are presented. The influence of opening cracks on each other is considered in the problem on crack faces loaded by pulse forces. This problem is reduced to a system of boundary integral equations of the wave-potential type in a time domain. The dynamic mode I stress intensity factors are determined for two coplanar elliptic cracks under forces in the form of the Heaviside function  相似文献   

12.
Using the fundamental solutions for three-dimensional transversely isotropic magnetoelectroelastic bimaterials, the extended displacements at any point for an internal crack parallel to the interface in a magnetoelectroelastic bimaterial are expressed in terms of the extended displacement discontinuities across the crack surfaces. The hyper-singular boundary integral–differential equations of the extended displacement discontinuities are obtained for planar interface cracks of arbitrary shape under impermeable and permeable boundary conditions in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. An analysis method is proposed based on the analogy between the obtained boundary integral–differential equations and those for interface cracks in purely elastic media. The singular indexes and the singular behaviors of near crack-tip fields are studied. Three new extended stress intensity factors at crack tip related to the extended stresses are defined for interface cracks in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. A penny-shaped interface crack in magnetoelectroelastic bimaterials is studied by using the proposed method.The results show that the extended stresses near the border of an impermeable interface crack possess the well-known oscillating singularity r?1/2±iε or the non-oscillating singularity r?1/2±κ. Three-dimensional transversely isotropic magnetoelectroelastic bimaterials are categorized into two groups, i.e., ε-group with non-zero value of ε and κ-group with non-zero value of κ. The two indexes ε and κ do not coexist for one bimaterial. However, the extended stresses near the border of a permeable interface crack have only oscillating singularity and depend only on the mechanical loadings.  相似文献   

13.
This study is concerned with the treatment of the dynamic behavior of interacting cracks in a piezoelectric layer bonded to two dissimilar piezoelectric half planes subjected to harmonic anti-plane shear waves. The permeable electric boundary condition is considered. By use of the Fourier transform technique, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in two series of Jacobi polynomials. The electromechanical behavior of two pairs of unequal parallel cracks was determined. Numerical examples are provided to show the effects of the geometry of the cracks, the frequency of the incident waves and materials properties upon the dynamic stress intensity factors (DSIFs) and the electric displacement intensity factors.  相似文献   

14.
The behavior of two parallel non-symmetric cracks in piezoelectric materials subjected to the anti-plane shear loading was studied by the Schmidt method for the permeable crack electric boundary conditions. Through the Fourier transform, the present problem can be solved with two pairs of dual integral equations ip which the unknown variables are the jumps of displacements across crack surfaces. To solve the dual integral equations, the jumps of displacements across crack surfaces were directly expanded in a series of Jacobi polynomials. Finally, the relations between electric displacement intensity factors and stress intensity factors at crack tips can be obtained. Numerical examples are provided to show the effect of the distance between two cracks upon stress and electric displacement intensity factors at crack tips. Contrary to the impermeable crack surface condition solution, it is found that electric displacement intensity factors for the permeable crack surface conditions are much smaller than those for the impermeable crack surface conditions. At the same time, it can be found that the crack shielding effect is also present in the piezoelectric materials.  相似文献   

15.
The dynamic behavior of two parallel symmetric cracks in functionally graded piezoelectric/piezomagnetic materials subjected to harmonic antiplane shear waves is investigated using the Schmidt method. The present problem can be solved using the Fourier transform and the technique of dual integral equations, in which the unknown variables are jumps of displacements across the crack surfaces, not dislocation density functions. To solve the dual integral equations, the jumps of displacements across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric, magnetic flux, and dynamic stress fields near crack tips can be obtained. Numerical examples are provided to show the effect of the functionally graded parameter, the distance between the two parallel cracks, and the circular frequency of the incident waves upon the stress, electric displacement, and magnetic flux intensity factors at crack tips.  相似文献   

16.
DYNAMICSTRESSINTENSITYFACTORSAROUNDTWOCRACKSNEARANINTERFACEOFTWODISSIMILARELASTICHALF-PLANESUNDERIN-PLANESHEARIMPACTLOADQianR...  相似文献   

17.
In this paper, the dynamic behavior of two collinear symmetric interface cracks between two dissimilar magneto-electro-elastic material half planes under the harmonic anti-plane shear waves loading is investigated by Schmidt method. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of the displacements across the crack surfaces. To solve the triple integral equations, the jump of the displacements across the crack surface is expanded in a series of Jacobi polynomials. Numerical solutions of the stress intensity factor, the electric displacement intensity factor and the magnetic flux intensity factor are given. The relations among the electric filed, the magnetic flux field and the stress field are obtained.  相似文献   

18.
In this paper we develop closed form solutions for anti-plane mechanical and in-plane electric and magnetic fields for two collinear cracks in magneto-electro-elastic layer of finite thickness under the conditions of permeable crack faces using integral transform method. The anti-plane mechanical shear or displacement and in-plane electrical and magnetic loading are applied to the top and bottom surfaces of the layer for the two cases considered. Expressions for shear stresses, electric displacements and magnetic inductions in the vicinity of the cracks are derived as well as intensity factors for two cracks in magneto-electro-elastic layer. Numerical results for stress intensity factors and energy release rate are shown graphically.  相似文献   

19.
In this paper, the behavior of two collinear cracks in magneto-electro-elastic composite material under anti-plane shear stress loading is studied by the Schmidt method for permeable electric boundary conditions. By using the Fourier transform, the problem can be solved with a set of triple integral equations in which the unknown variable is the jump of displacements across the crack surfaces. In solving the triple integral equations, the unknown variable is expanded in a series of Jacobi polynomials. Numerical solutions are obtained. It is shown that the stress field is independent of the electric field and the magnetic flux.  相似文献   

20.
In this paper, the dynamic interaction of two parallel cracks in functionally graded materials (FGMs) is investigated by means of the non-local theory. To make the analysis tractable, the shear modulus and the material density are assumed to vary exponentially with the coordinate vertical to the crack. To reduce mathematical difficulties, a one-dimensional non-local kernel is used instead of a two-dimensional one for the dynamic problem to obtain stress fields near the crack tips. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Unlike the classical elasticity solutions, it is found that no stress singularity is present at the crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tips. The present result provides theoretical references helpful for evaluating relevant strength and preventing material failure of FGMs with initial cracks. The magnitude of the finite stress field depends on relevant parameters, such as the crack length, the distance between two parallel cracks, the parameter describing the FGMs, the frequency of the incident waves and the lattice parameter of materials. The project supported by the National Natural Science Foundation of China (90405016, 10572044) and the Specialized Research Fund for the Doctoral Program of Higher Education (20040213034). The English text was polished by Yunming Chen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号