首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photolyase (PL) is a DNA repair enzyme which splits UV light-induced thymine dimers on DNA by an electron transfer reaction occurring between the photoactivated FADH(-) cofactor and the DNA dimer in the DNA/PL complex. The crystal structure of the DNA/photolyase complex from Anacystis nidulans has been solved. Here, using the experimental crystal structure, we re-examine the details of the repair electron transfer reaction and address the question of energy transfer from the antenna HDF to the redox active FADH(-) cofactor. The photoactivation of FADH(-) immediately preceding the electron transfer is a key step in the repair mechanism that is largely left unexamined theoretically. An important butterfly thermal motion of flavin is identified in ab initio calculations; we propose its role in the back electron transfer from DNA to photolyase. Molecular dynamics simulation of the whole protein/DNA complex is carried out to obtain relevant cofactor conformations for ZINDO/S spectroscopic absorption and fluorescence calculations. We find that significant thermal broadening of the spectral lines, due to protein dynamics, as well as the alignment of the donor HDF and the acceptor FADH(-) transition dipole moments both contribute to the efficiency of energy transfer. The geometric factor of F?rster's dipolar coupling is calculated to be 1.82, a large increase from the experimentally estimated 0.67. Using F?rster's mechanism, we find that the energy transfer occurs with remarkable efficiency, comparable with the experimentally determined value of 98%.  相似文献   

2.
Reduced anionic flavin adenine dinucleotide (FADH?) is the critical cofactor in DNA photolyase (PL) for the repair of cyclobutane pyrimidine dimers (CPD) in UV‐damaged DNA. The initial step involves photoinduced electron transfer from *FADH? to the CPD. The adenine (Ade) moiety is nearly stacked with the flavin ring, an unusual conformation compared to other FAD‐dependent proteins. The role of this proximity has not been unequivocally elucidated. Some studies suggest that Ade is a radical intermediate, but others conclude that Ade modulates the electron transfer rate constant (kET) through superexchange. No study has succeeded in removing or modifying this Ade to test these hypotheses. Here, FAD analogs containing either an ethano‐ or etheno‐bridged Ade between the AN1 and AN6 atoms (e‐FAD and ε‐FAD, respectively) were used to reconstitute apo‐PL, giving e‐PL and ε‐PL respectively. The reconstitution yield of e‐PL was very poor, suggesting that the hydrophobicity of the ethano group prevented its uptake, while ε‐PL showed 50% reconstitution yield. The substrate binding constants for ε‐PL and rPL were identical. ε‐PL showed a 15% higher steady‐state repair yield compared to FAD‐reconstituted photolyase (rPL). The acceleration of repair in ε‐PL is discussed in terms of an ε‐Ade radical intermediate vs superexchange mechanism.  相似文献   

3.
Proton-coupled electron-transfer (PCET) is a mechanism of great importance in protein electron transfer and enzyme catalysis, and the involvement of aromatic amino acids in this process is of much interest. The DNA repair enzyme photolyase provides a natural system that allows for the study of PCET using a neutral radical tryptophan (Trp(?)). In Escherichia coli photolyase, photoreduction of the flavin adenine dinucleotide (FAD) cofactor in its neutral radical semiquinone form (FADH(?)) results in the formation of FADH(-) and (306)Trp(?). Charge recombination between these two intermediates requires the uptake of a proton by (306)Trp(?). The rate constant of charge recombination has been measured as a function of temperature in the pH range from 5.5 to 10.0, and the data are analyzed with both classical Marcus and semi-classical Hopfield electron transfer theory. The reorganization energy associated with the charge recombination process shows a pH dependence ranging from 2.3 eV at pH ≤ 7 and 1.2 eV at pH(D) 10.0. These findings indicate that at least two mechanisms are involved in the charge recombination reaction. Global analysis of the data supports the hypothesis that PCET during charge recombination can follow two different mechanisms with an apparent switch around pH 6.5. At lower pH, concerted electron proton transfer (CEPT) is the favorable mechanism with a reorganization energy of 2.1-2.3 eV. At higher pH, a sequential mechanism becomes dominant with rate-limiting electron-transfer followed by proton uptake which has a reorganization energy of 1.0-1.3 eV. The observed 'inverse' deuterium isotope effect at pH < 8 can be explained by a solvent isotope effect that affects the free energy change of the reaction and masks the normal, mass-related kinetic isotope effect that is expected for a CEPT mechanism. To the best of our knowledge, this is the first time that a switch in PCET mechanism has been observed in a protein.  相似文献   

4.
Photoreduction of the semi-reduced flavin adenine dinucleotide cofactor FADH* in DNA photolyase from Escherichia coli into FADH- involves three tryptophan (W) residues that form a closely spaced electron-transfer chain FADH*-W382-W359-W306. To investigate this process, we have constructed a mutant photolyase in which W359 is replaced by phenylalanine (F). Monitoring its photoproducts by femtosecond spectroscopy, the excited-state FADH* was found to decay in approximately 30 ps, similar as in wild type (WT) photolyase. In contrast to WT, however, in W359F mutant photolyase the ground-state FADH* fully recovered virtually concomitantly with the decay of its excited state and, despite the presence of the primary electron donor W382, no measurable flavin reduction was observed at any time. Thus, W359F photolyase appears to behave like many other flavoproteins, where flavin excited states are quenched by very short-lived oxidation of aromatic residues. Our analysis indicates that both charge recombination of the primary charge separation state FADH-W382*+ and (in WT) electron transfer from W359 to W382*+ occur with time constants <4 ps, considerably faster than the initial W382-->FADH* electron-transfer step. Our results provide a first experimental indication that electron transfer between aromatic residues can take place on the time scale of approximately 10(-12) s.  相似文献   

5.
Nicolas J. Saettel 《Tetrahedron》2006,62(27):6490-6500
The electron transfer catalyzed cycloreversion of cyclobutane pyrimidine dimers is the key step in repair of light-induced DNA lesions catalyzed by the enzyme CPD photolyase. The formation of the CPD radical anion was found to be strongly solvent dependent due to a specific hydrogen bond that stabilizes the valence bound state over the dipole bound state of the additional electron. The effect of solvation on the vertical and adiabatic electron affinity of uracil and uracil dimers as well as on the mechanism of the cycloreversion of the uracil dimer radical anion is explored for three model systems that include explicit solvent molecules at the B3LYP/6-311++G∗∗/B3LYP/6-31+G level of theory. The second solvation shell is described using the implicit C-PCM solvation model. These calculations indicate an effectively barrierless mechanism. These results are in agreement with the available experimental data for the reaction energies and isotope effects. It is also shown that a single hydrogen bond donor is a sufficient minimal model for the first solvation shell by adequately describing the stabilization of the valence bound state of the radical anion through hydrogen bonding. The relationship of these model systems with the enzymatic reaction catalyzed by DNA photolyase is also discussed.  相似文献   

6.
The electron transfer catalyzed (ETC) repair of the DNA photolesion cyclobutane pyrimidine dimer (CPD) is mediated by the enzyme DNA photolyase. Due to its importance as part of the cancer prevention mechanism in many organisms, but also due to its unique mechanism, this DNA photoreactivation is a topic of intense study. The progress in the application of computational methods to three aspects of the ETC repair of CPD is reviewed: (i) electronic structure calculations of the cycloreversion of the CPD radical cation and radical anion, (ii) MD simulations of the DNA photolyase and its complex to photodamaged DNA, and (iii) the structure and dynamics of photodamaged DNA. The contributions of this work to the overall understanding of the reaction and its relationship to the available experimental work are highlighted.  相似文献   

7.
We report here our systematic studies of the dynamics of four redox states of the flavin cofactor in both photolyases and insect type 1 cryptochromes. With femtosecond resolution, we observed ultrafast photoreduction of oxidized state flavin adenine dinucleotide (FAD) in subpicosecond and of neutral radical semiquinone (FADH(*)) in tens of picoseconds through intraprotein electron transfer mainly with a neighboring conserved tryptophan triad. Such ultrafast dynamics make these forms of flavin unlikely to be the functional states of the photolyase/cryptochrome family. In contrast, we find that upon excitation the anionic semiquinone (FAD(*-)) and hydroquinone (FADH(-)) have longer lifetimes that are compatible with high-efficiency intermolecular electron transfer reactions. In photolyases, the excited active state (FADH(-)*) has a long (nanosecond) lifetime optimal for DNA-repair function. In insect type 1 cryptochromes known to be blue-light photoreceptors the excited active form (FAD(*-)*) has complex deactivation dynamics on the time scale from a few to hundreds of picoseconds, which is believed to occur through conical intersection(s) with a flexible bending motion to modulate the functional channel. These unique properties of anionic flavins suggest a universal mechanism of electron transfer for the initial functional steps of the photolyase/cryptochrome blue-light photoreceptor family.  相似文献   

8.
Redox-active enzyme cofactors derived from ribonucleotides have been called "fossils of the RNA world," suggesting that early catalysts employed modified nucleobases to facilitate redox chemistry in primitive metabolism. Here, we show that the common oxidative damage product 8-oxo-7,8-dihydroguanine (OG), when incorporated into a DNA or RNA strand in proximity to a cyclobutane pyrimidine dimer, can mimic the function of a flavin in photorepair. The OG nucleotide acts catalytically in a mechanism consistent with that of photolyase in which the photoexcited state of the purine donates an electron to a pyrimidine dimer to initiate bond cleavage; subsequent back electron transfer regenerates OG. This unusual example of one form of DNA damage, oxidation, functioning to repair another, photodimerization, may provide insight into the origins of prebiotic redox processes.  相似文献   

9.
Abstract— DNA photolyases photorepair pyrimidine dimers (PyroPyr) in DNA as well as RNA and thus reverse the harmful effects of UV-A (320–400 nm) and UV-B (280–320 nm) radiations. Photolyases from various organisms have been found to contain two noncovalently bound cofactors; one is a fully reduced flavin adenine dinucleotide (FADH-) and the other, commonly known as second chromophore, is either methenyltetrahydrofolate (MTHF) or 8-hydroxydeazaflavin (8-HDF). The second chromophore in photolyase is a light-harvesting molecule that absorbs mostly in the near-UV and visible wavelengths (300–500 nm) with its high extinction coefficient. The second chromophore then transfers its excitation energy to the FADH-. Subsequently, the photoexcited FADH- transfers an electron to the Pyr<>Pyr generating a dimer radical anion (Pyr<>Pyr-) and a neutral flavin radical (FADH-). The Pyr<>Pyr- is very unstable and undergoes spontaneous splitting followed by a back electron transfer to the FADH-. In addition to the main catalytic cofactor FADH-, a Trp (Trp277 in Escherichia coli ) in apophotolyase, independent of other chromophores, also functions as a sensitizer to repair Pyr <> Pyr by direct electron transfer.  相似文献   

10.
To mimic photolyase for efficient repair of UV-damaged DNA, numerous biomimetic systems have been synthesized, but all show low repair efficiency. The molecular mechanism of this low-efficiency process is still poorly understood. Here we report our direct mapping of the repair processes of a flavin-thymine dimer adduct with femtosecond resolution. We followed the entire dynamic evolution and observed direct electron transfer (ET) from the excited flavin to the thymine dimer in 79 ps. We further observed two competitive pathways, productive dimer ring splitting within 435 ps and futile back-ET in 95 ps. Our observations reveal that the underlying mechanism for the low repair quantum yield of flavin-thymine dimer adducts is the short-lived excited flavin moiety and the fast dynamics of futile back-ET without repair.  相似文献   

11.
DNA光复活作用机理的研究进展*   总被引:11,自引:0,他引:11  
宋钦华  郭庆祥 《化学进展》2001,13(6):428-435
"环丁烷型嘧啶二聚体(Pyr< > Pyr) 是太阳光中紫外线造成DNA 损伤的主要光化学产物。DNA 光复活酶(或称光解酶) 能够利用可见光裂解二聚体的环丁烷环而修复DNA。本文对DNA 光复活过程中的光解酶对Pyr< > Pyr 的识别和光催化Pyr< > Pyr 裂解反应进行了综述, 介绍了DNA 光解酶的结构、DNA 的主要UV 光化学产物。较详尽地评述了国际上在光解酶催化二聚体裂解的途径以及模型研究方面的最新进展, 并预测了该领域的发展前景。  相似文献   

12.
Proteins of the cryptochrome/photolyase family share high sequence similarities, common folds, and the flavin adenine dinucleotide (FAD) cofactor, but exhibit diverse physiological functions. Mammalian cryptochromes are essential regulatory components of the 24 h circadian clock, whereas (6-4) photolyases recognize and repair UV-induced DNA damage by using light energy absorbed by FAD. Despite increasing knowledge about physiological functions from genetic analyses, the molecular mechanisms and conformational dynamics involved in clock signaling and DNA repair remain poorly understood. The (6-4) photolyase, which has strikingly high similarity to human clock cryptochromes, is a prototypic biological system to study conformational dynamics of cryptochrome/photolyase family proteins. The entire light-dependent DNA repair process for (6-4) photolyase can be reproduced in a simple in vitro system. To decipher pivotal reactions of the common FAD cofactor, we accomplished time-resolved measurements of radical formation, diffusion, and protein conformational changes during light-dependent repair by full-length (6-4) photolyase on DNA carrying a single UV-induced damage. The (6-4) photolyase by itself showed significant volume changes after blue-light activation, indicating protein conformational changes distant from the flavin cofactor. A drastic diffusion change was observed only in the presence of both (6-4) photolyase and damaged DNA, and not for (6-4) photolyase alone or with undamaged DNA. Thus, we propose that this diffusion change reflects the rapid (50 μs time constant) dissociation of the protein from the repaired DNA product. Conformational changes with such fast turnover would likely enable DNA repair photolyases to access the entire genome in cells.  相似文献   

13.
Cryptochromes are flavoproteins that exhibit high sequence and structural similarity to the light-dependent DNA-repair enzyme, photolyase. Cryptochromes have lost the ability to repair DNA; instead, they use the energy from near-UV/blue light to regulate a variety of growth and adaptive processes in organisms ranging from bacteria to humans. The photocycle of cryptochrome is not yet known, although it is hypothesized that it may share some similarity to that of photolyase, which utilizes light-driven electron transfer from the catalytic flavin chromophore. In this review, we present genetic evidence for the photoreceptive role of cryptochromes and discuss recent biochemical studies that have furthered our understanding of the cryptochrome photocycle. In particular, the role of the unique C-terminal domain in cryptochrome phototransduction is discussed.  相似文献   

14.
Abstract— Using flash photolytic techniques and direct chemical measurements of the conversion of the substrate (conversion of thymine dimers in DNA to monomeric thymine), we have determined photolyase concentrations in partially purified preparations of soluble proteins from yeast and have determined under continuous intense light the forward rate constant k1 for binding of the enzyme and its substrate under a variety of conditions. The ionic requirements and the sharp peak of ionic strength dependence are independent of the species of uni-univalent salts used in the assay. At infinite dilution, the k1 for denatured DNA, and its ionic strength dependence, both appear identical to the values for native DNA. Both unirradiated denatured and unirradiated native DNA inhibit binding, denatured DNA being 10- to 20-fold more effective. These combined factors have been taken into account to devise a sensitive assay for photoreactivable lesions in unlabeled DNA by competition in a flash photoreactivation reaction. The assay is used to measure dark repair in Micrococcus luteus in complete medium. After a dose of 100 J/m2 the wild type of this organism removes photoreactivable lesions (pyrimidine dimers) from its DNA with a half-time of 7 min at 35°C.  相似文献   

15.
Given its well‐ordered continuous π stacking of nucleobases, DNA has been considered as a biomaterial for charge transfer in biosensors. For cathodic photocurrent generation resulting from hole transfer in DNA, sensitivity to DNA structure and base‐pair stacking has been confirmed. However, such information has not been provided for anodic photocurrent generation resulting from excess‐electron transfer in DNA. In the present study, we measured the anodic photocurrent of a DNA‐modified Au electrode. Our results demonstrate long‐distance excess‐electron transfer in DNA, which is dominated by a hopping mechanism, and the photocurrent generation is sequence dependent.  相似文献   

16.
Charge separation and radical transfer in DNA photolyase from Escherichia coli is investigated by computing electrostatic free energies from a solution of the Poisson-Boltzmann equation. For the initial charge separation 450 meV are available. According to recent experiments [Aubert et al. Nature 2000, 405, 586-590] the flavin receives an electron from the proximal tryptophan W382, which consequently forms a cationic radical WH(*)(+)382. The radical state is subsequently transferred along the triad W382-W359-W306 of conserved tryptophans. The radical transfer to the intermediate tryptophan W359 is nearly isoenergetic (58 meV uphill); the radical transfer from the intermediate W359 to the distal W306 is 200 meV downhill in energy, funneling and stabilizing the radical state at W306. The resulting cationic radical WH(*)(+)306 is further stabilized by deprotonation, yielding the neutral radical W(*)306, which is 214 meV below WH(*)(+)306. The time scale of the charge recombination process yielding back the resting enzyme with FADH(*) is governed by reprotonation of W306, with a calculated lifetime of 1.2 ms that correlates well with the measured lifetime of 17 ms. In photolyase from Anacystis nidulans the radical state is partially transferred to a tyrosine [Aubert et al. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 5423-5427]. In photolyase from Escherichia coli, there is a tyrosine (Y464) close to the distal tryptophan W306 that could play this role. We show that this tyrosine cannot be involved in radical transfer, because the electron transfer from tyrosine to W306 is much too endergonic (750 meV) and a direct hydrogen transfer is likely too slow. Coupling of specific charge states of the tryptophan triad with protonation patterns of titratable residues of photolyase is small.  相似文献   

17.
Transient absorption spectroscopy is a powerful tool for studying biological electron-transfer chains, provided that their members give rise to distinct changes of their absorption spectra. There are, however, chains that contain identical molecules, so that electron transfer between them does not change net absorption. An example is the chain flavin adenine dinucleotide (FAD)-W382-W359-W306 in DNA photolyase from E. coli. Upon absorption of a photon, the excited state of FADH* (neutral FAD radical) abstracts an electron from the tryptophan residue W382 in approximately 30 ps (monitored by transient absorption). The cation radical W382*+ is presumably reduced by W359 and W359*+ by W306. The latter two reactions could not be monitored directly so far because the absorption changes of the partners compensate in each step. To overcome this difficulty, we used linearly polarized flashes for excitation of FADH*, thus inducing a preferential axis in the a priori unoriented sample (photoselection). Because W359 and W306 are very differently oriented within the protein, detection with polarized light should allow us to distinguish them. To demonstrate this, W306 was mutated to redox-inert phenylalanine. We show that the resulting anisotropy spectrum of the initial absorption changes (measured at 10 ns time resolution) is in line with W359 being oxidized. The corresponding spectrum in wildtype photolyase is clearly different and identifies W306 as the oxidized species. These findings set an upper limit of 10 ns for electron transfer from W306 to W359*+ in wildtype DNA photolyase, consistent with previous, more indirect evidence [Aubert, C.; Vos, M. H.; Mathis, P.; Eker, A. P. M.; Brettel, K. Nature 2000, 405, 586-590].  相似文献   

18.
Plant cryptochromes are photoreceptors that regulate flowering, circadian rhythm and photomorphogenesis in response to blue and UV‐A light. It has been demonstrated that the oxidized flavin cofactor is photoreduced to the neutral radical state via separate electron and proton transfer. Conformational changes have been found in the C‐terminal extension, but few studies have addressed the changes in secondary structure in the sensory photolyase homology region (PHR). Here, we investigated the PHR of the plant cryptochrome from the green alga Chlamydomonas reinhardtii by light‐induced infrared difference spectroscopy in combination with global 13C and 15N isotope labeling. Assignment of the signals is achieved by establishing a labeling strategy for cryptochromes that preserves the flavin at natural abundance. We demonstrate by UV/vis spectroscopy that the integrity of the sample is maintained and by mass spectrometry that the global labeling was highly efficient. As a result, difference bands are resolved at full intensity that at natural abundance are compensated by the overlap of flavin and protein signals. These bands are assigned to prominent conformational changes in the PHR by blue light illumination. We postulate that not only the partial unfolding of the C‐terminal extension but also changes in the PHR may mediate signaling events.  相似文献   

19.
A carboxylated adenosine analog (C-Ado) has been synthesized and probed via time-resolved photoelectron spectroscopy in order to induce intra-molecular charge transfer from the carboxylic acid moiety to the nucleobase. Intra-molecular charge transfer can be exploited as starting point to probe low-energy electron (LEE) damage in DNA and its derivatives. Time-dependent density functional theory (TD-DFT) calculations at the B3LYP-6311G level of theory have been performed to verify that the highest occupied molecular orbital (HOMO) was located on carboxylic acid and that the lowest occupied molecular orbital (LUMO) was on the nucleobase. Hence, the carboxylic acid could work as electron source, whilst the nucleobase could serve the purpose of electron acceptor. The dynamics following excitation at 4.66 eV (266 nm) were probed using time-resolved photoelectron spectroscopy using probes at 1.55 eV (800 nm) and 3.10 eV (400 nm). The data show rapid decay of the excited state population and, based on the similarity of the overall dynamics to deoxy-adenosine monophosphate (dAMP), it appears that the dominant decay mechanism is internal conversion following 1ππ* excitation of the nucleobase, rather than charge-transfer from the carboxylic acid to the nucleobase.  相似文献   

20.
Several strategies have evolved to repair one of the abundant UV radiation‐induced damages caused to DNA, namely the mutagenic pyrimidine (6‐4) pyrimidone photolesions. DNA (6‐4)‐photolyases are enzymes repairing these lesions by a photoinitiated electron transfer. An important aspect of a possible repair mechanism is its generality and transferability to different (6‐4) lesions. Therefore, previously suggested mechanisms for the repair of the T(6‐4)T lesion are here transferred to the T(6‐4)C and C(6‐4)T lesions and investigated theoretically using quantum chemical methods. Despite the different functional groups of the pyrimidine bases involved, a general valid molecular mechanism was identified, in which the initial step is an electron transfer coupled to a proton transfer from the protonated HIS365 to the N3 nitrogen of the 3 pyrimidine, followed by an intramolecular OH/NH2 transfer in one concerted step, which does not require an oxetane/azetidine or isolated water/ammonia intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号