首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

2.
A great deal of interest has recently focused on host–guest systems consisting of one‐dimensional collinear arrays of conjugated molecules encapsulated in the channels of organic or inorganic matrices. Such architectures allow for controlled charge and energy migration processes between the interacting guest molecules and are thus attractive in the field of organic electronics. In this context, we characterize here at a quantum‐chemical level the molecular parameters governing charge transport in the hopping regime in 1D arrays built with different types of molecules. We investigate the influence of several parameters (such as the symmetry of the molecule, the presence of terminal substituents, and the molecular size) and define on that basis the molecular features required to maximize the charge carrier mobility within the channels. In particular, we demonstrate that a strong localization of the molecular orbitals in push–pull compounds is generally detrimental to the charge transport properties.  相似文献   

3.
4.
A new host molecule consists of four terpyridine groups as the binding sites with zinc(II) ion and a copillar[5]arene incorporated in the center as a spacer to interact with guest molecule was designed and synthesized. Due to the 120 ° angle of the rigid aromatic segment, a cross‐linked dimeric hexagonal supramolecular polymer was therefore generated as the result of the orthogonal self‐assembly of metal–ligand coordination and host–guest interaction. UV/Vis spectroscopy, 1H NMR spectroscopy, viscosity and dynamic light‐scattering techniques were employed to characterize and understand the cross‐linking process with the introduction of zinc(II) ion and guest molecule. More importantly, well‐defined morphology of the self‐assembled supramolecular structure can be tuned by altering the adding sequence of the two components, that is, the zinc(II) ion and the guest molecule. In addition, introduction of a competitive ligand suggested the dynamic nature of the supramolecular structure.  相似文献   

5.
Mixed‐donor atom tetramethoxy resorcinarene bis‐thiacrown hosts, in which the crown unit contains both hard oxygen and soft sulfur donor atoms, were synthesized for soft metal cation binding. The binding properties were investigated both in solution and in the solid state by NMR spectroscopy and X‐ray crystallography. It was found that the resorcinarene bis‐thiacrowns were able to complex silver cations with remarkable affinity forming readily 1:2 host–guest complexes in solution. The solid state structures also revealed that the bis‐thiacrowns form silver complexes in an unanticipated endo‐ and exo‐cavity fashion within the same host molecule. Both the solution and solid state studies indicated the sulfur atoms to be the major contributing donor atoms in forming the binding interactions with silver cations.  相似文献   

6.
The components of a 1:2 mixture of meso‐tetrakis(4‐dodecyl‐3,5‐dihydroxyphenyl)porphyrin ( 1 ) and a bowl‐shaped tetrakis(4‐pyridylethynyl)cavitand ( 2 ) in CDCl3 or C6D6 self‐assemble quantitatively into the doubly cavitand‐capped porphyrin capsule 2?1?2 through eight ArOH ??? Npy hydrogen bonds. Capsule 2?1?2 possesses two cavities divided by the porphyrin ring and encapsulates two molecules of 1‐acetoxy‐3,5‐dimethoxybenzene ( G ) as a guest to form G / G @( 2?1?2 ). Remarkable solvent effect was observed, in which the apparent association constant of 2?1?2 with G in C6D6 was much greater than that in CDCl3.  相似文献   

7.
The self‐assembly of higher‐order anion helicates in solution remains an elusive goal. Herein, we present the first triple helicate to encapsulate iodide in organic and aqueous media as well as the solid state. The triple helicate self‐assembles from three tricationic arylethynyl strands and resembles a tubular anion channel lined with nine halogen bond donors. Eight strong iodine???iodide halogen bonds and numerous buried π‐surfaces endow the triplex with remarkable stability, even at elevated temperatures. We suggest that the natural rise of a single‐strand helix renders its linear halogen‐bond donors non‐convergent. Thus, the stringent linearity of halogen bonding is a powerful tool for the synthesis of multi‐strand anion helicates.  相似文献   

8.
The construction of efficient synthetic functional receptors with tunable cavities, and the self‐organization of guest molecules within these cavities through noncovalent interactions can be challenging. Here we have prepared a double‐cavity molecular cup based on hexaethynylbenzene that possesses a highly π‐conjugated interior for the binding of electron‐rich guests. X‐ray crystallography, NMR spectroscopy, UV/Vis spectroscopy, fluorescent spectroscopy, cyclic voltammetry, and SEM were used to investigate the structures and the binding behaviors. The results indicated that the binding of a guest in one cavity would affect the binding of the same or another guest in the other cavity. The effect of electron transfer in this system suggests ample opportunities for tuning the optical and electronic properties of the molecular cup and the encapsulated guest. The encapsulation of different guests would also lead to different aggregate nanostructures, which is a new way to tune their supramolecular architectures.  相似文献   

9.
By introducing slight structural modifications to a D4‐symmetric coordination capsule, we succeeded in isolating the nearly enantiopure capsules (P)‐ and (M)‐ 2 a (BF4)4. Chiral guest, dibenzyl 4,4′‐diacetoxy‐6,6′‐dimethyl‐[1,1′‐biphenyl]‐2,2′‐dicarboxylate ( 3 ) was encapsulated within the dissymmetric cavity of 2 a (BF4)4, resulting in a high diastereoselectivity of >99 % de. The encapsulated guest was successfully removed from the complex without racemization through precipitation of the empty capsule. CD spectra confirmed that the chirality of the capsule was maintained in THF and 1,4‐dioxane for long periods, whereas a small amount of acetonitrile accelerated racemization of the empty capsule. The activation parameters of the racemization reaction were determined in dichloromethane and 1,2‐dichloroethane, resulting in positive enthalpic contributions and large negative entropic contributions, respectively. Accordingly, the racemization fits a first‐order kinetic model. Mechanically coupled Cu+‐2,2′‐bipyridine coordination centers were responsible for the high‐energy barrier of racemization and led to the unique chiral memory of the dissymmetric cavity, which was turned off by the addition of acetonitrile.  相似文献   

10.
11.
Bowl‐shaped macrocycles have the distinctive feature that their two sides are differentiated, and thus can be developed into elaborate hosts that fix a target molecule in a controlled geometry through multipoint interactions. We now report the synthesis of a bowl‐shaped macrocyclic trimer of the boron–dipyrrin (BODIPY) complex and its unidirectional threading of guest molecules. Six polarized Bδ+?Fδ‐ bonds are directed towards the center of the macrocycle, which enables strong recognition of cationic guests. Specifically, the benzylbutylammonium ion is bound in a manner in which the benzyl group is located at the convex face of the bowl and the butyl group at its concave face. Furthermore, adrenaline was strongly captured on the convex side of the bowl by hydrogen bonding, Coulomb forces, and C?H???π interactions.  相似文献   

12.
Two bowl‐shaped cavities , each having three OH? hydrogen‐bond donors at its base, are present in double‐cone‐shaped metallacrown anion host [Co6(μ‐OH)6(μ‐L)6]m+ ( 1 m + ; HL=3{5}‐(pyrid‐2‐yl)‐5{3}‐(tert‐butyl)pyrazole). Depending on its affinity for the anions present, it can be isolated in its CoIII3CoII3 (m=3; e.g., 1 (ClO4)3) and CoIII2CoII4 (m=2; e.g., 1 (BF4)2 ? n H2O) oxidation states. See picture for photographs of isolated salts.

  相似文献   


13.
14.
Positive cooperativity achieved through activating weak non‐covalent interactions is common in biological assemblies but is rarely observed in synthetic complexes. Two new molecular tubes have been synthesized and the syn isomer binds DABCO‐based organic cations with high orientational selectivity. Surprisingly, the ternary complex with two hosts and one guest shows a high cooperativity factor (α=580), which is the highest reported for synthetic systems without involving ion‐pairing interactions. The X‐ray single‐crystal structure revealed that the strong positive cooperativity likely originates from eight C?H???O hydrogen bonds between the two head‐to‐head‐arranged syn tube molecules. These relatively weak hydrogen bonds were not observed in the free hosts and only emerged in the complex. Furthermore, this complex was used as a basic motif to construct a robust [2+2] cyclic assembly, thus demonstrating its potential in molecular self‐assembly.  相似文献   

15.
The social self‐sorting supramolecular assembly is described by non‐covalent interactions among four organic components. Toward this goal, a series of self‐sorting systems have been investigated by mixing two or three different compounds; naphthyl‐bridged bis(α‐cyclodextrin), N,N′‐dioctyl‐4,4′‐bipyridinium, 2,6‐dihydroxynaphthalene, and cucurbit[8]uril. The influence of alkyl chains of viologen derivatives and the binding abilities of these systems have also been studied. Their integrative self‐sorting led to the exclusive formation of the purple supramolecular heterowheel polypseudorotaxane. The heterowheel polypseudorotaxane is a thermodynamically stable self‐sorted product, and consists of two different macrocycles with three sorts of different non‐covalent interactions. Its structure was established by NMR spectroscopy and UV/Vis absorption spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light‐scattering (DLS), diffusion‐ordered spectroscopy (DOSY), and viscosity measurements.  相似文献   

16.
Pseudo‐octahedral MII6L4 capsules result from the subcomponent self‐assembly of 2‐formylphenanthroline, threefold‐symmetric triamines, and octahedral metal ions. Whereas neutral tetrahedral guests and most of the anions investigated were observed to bind within the central cavity, tetraphenylborate anions bound on the outside, with one phenyl ring pointing into the cavity. This binding configuration is promoted by the complementary arrangement of the phenyl rings of the intercalated guest between the phenanthroline units of the host. The peripherally bound, rapidly exchanging tetraphenylborate anions were found to template an otherwise inaccessible capsular structure in a manner usually associated with slow‐exchanging, centrally bound agents. Once formed, this cage was able to bind guests in its central cavity.  相似文献   

17.
18.
A simple self‐assembled [Pd2 L 4] coordination cage consisting of four carbazole‐based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L 8] upon the addition of 1.5 equivalents of halide anions (X=Cl?, Br?). The halide anions serve as templates, as they are sandwiched by four PdII cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each PdII node is trans‐coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.  相似文献   

19.
Guest‐induced M18L6–M24L8 capsule–capsule conversion is reported. Both capsules are composed of PdII ethylenediamine units (M) and 1,3,5‐tris(3,5‐pyrimidyl)pyrimidine (L), and form trigonal bipyramidal (M18L6) and octahedral (M24L8) closed‐shell structures with huge hydrophobic inner spaces. The M18L6 trigonal bipyramid is converted to the M24L8 octahedron through encapsulation of large aromatic guests, with the latter capsule possessing a cavity volume three times larger than the former. Despite the dynamic properties of the capsule host, the encapsulated guests are difficult to extract and are thus isolated from the external environment.  相似文献   

20.
Solvothermal reaction of Zn(NO3)2 ? 4 H2O, 1,4‐bis[2‐(4‐pyridyl)ethenyl]benzene (bpeb) and 4,4′‐oxybisbenzoic acid (H2obc) in the presence of dimethylacetamide (DMA) as one of the solvents yielded a threefold interpenetrated pillared‐layer porous coordination polymer with pcu topology, [Zn2(bpeb)(obc)2] ? 5 H2O ( 1 ), which comprised an unusual isomer of the well‐known paddle‐wheel building block and the transtranstrans isomer of the bpeb pillar ligand. When dimethylformamide (DMF) was used instead of DMA, a supramolecular isomer [Zn2(bpeb)(obc)2] ? 2 DMF ? H2O ( 2 ), with the transcistrans isomer of the bpeb ligand with a slightly different variation of the paddle‐wheel repeating unit, was isolated. In MeOH, single crystals of 2 were transformed by solvent exchange in a single‐crystal‐to‐single‐crystal (SCSC) manner to yield [Zn2(bpeb)(obc)2] ? 2 H2O ( 3 ), which is a polymorph of 1 . SCSC conversion of 3 to 2 was achieved by soaking 3 in DMF. Compounds 1 and 2 as well as 2 and 3 are supramolecular isomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号