首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GM1 is a common ganglioside pentasaccharide present on mammalian cell surface.It has been shown to play important roles in cellular communications and initiation of β-amyloid aggregation.In order to synthesize GM1,an efficient synthetic route was developed via a [3+2] strategy.The GM3 trisaccharide acceptor bearing an azido propyl group at the reducing end was prepared using the traditional acetamide protected sialyl thioglycosyl donor,which gave better stereoselectivity than sialyl donors protected with trichloroacetamide or oxazolidinone.The glycosylation of the axial 4-hydroxyl group of GM3 by the disaccharide donor was found to be highly dependent on donor protective groups.Donor bearing the more rigid benzylidene group gave low glycosylation yield.Replacing the benzylidene with acetates led to productive coupling and formation of the fully protected GM1 pentasaccharide.Deprotection of the pentasaccharide produced GM1 functionalized with the aminopropyl side chain,which will be a valuable probe for biological studies.  相似文献   

2.
Ganglioside GM3 and its derivatives have many important biological functions. Using diethyl phosphite protected sialic acid as glycosyl donor and 3,2′,3′,4′-unprotected lactose as glycosyl acceptor, the sialic acid-containing trisaccharide was assembled with excellent anomeric stereoselectivity. The trisaccharide was further coupled with ceramide precursor to yield sphingosine 1. Based on this key intermediate, two different series of N-modified GM3 analogues with modifications on either the nitrogen of sialic acid residue or the nitrogen of ceramide moiety and GM3 itself were synthesized smoothly.  相似文献   

3.
A convergent chemical synthesis of a pentasaccharide found in the O-specific polysaccharide of Escherichia coli O4:K3, O4:K6, and O4:K12 has been achieved in excellent yield. A [3+2] block synthetic strategy has been adopted to couple a disaccharide donor 11 with a trisaccharide acceptor 10 for the construction of the pentasaccharide derivative 12 which on deprotection furnished target pentasaccharide 1 as its 4-methoxyphenyl glycoside. Disaccharide thioglycoside donor 11 and trisaccharide acceptor 10 were prepared from suitably protected monosaccharide intermediates. Yields were excellent in all steps.  相似文献   

4.
The first chemical synthesis of MeO-3-GlcUAβ(1→3)GlcNAc-UDP to elucidate the catalytic mechanism of hyaluronic acid synthases (HASs) is described. Construction of the desired β(1→3)-linked disaccharide 10 was achieved very efficiently by coupling MeO-3-GlcUA donor 3 with the suitable protected GlcNTroc acceptor 4 using BF3·Et2O as Lewis acid. Chemoselective removal of anomeric NAP, phosphorylation, hydrogenation, coupling with UMP-morpholidate, and finally complete deprotection gave the target compound 1 in good yield.  相似文献   

5.
The first stereoselective organocatalyzed [3+2] cycloaddition reaction of donor‐acceptor cyclopropanes is presented. It is demonstrated that by applying an optically active bifunctional Brønsted base catalyst, racemic di‐cyano cyclopropylketones can be activated to undergo a stereoselective 1,3‐dipolar reaction with mono‐ and polysubstituted nitroolefins. The reaction affords functionalized cyclopentanes with three consecutive stereocenters in high yield and stereoselectivity. Based on the stereochemical outcome, a mechanism in which the organocatalyst activates both the donor‐acceptor cyclopropane and nitroolefin is proposed. Finally, chemoselective transformations of the cycloaddition products are demonstrated.  相似文献   

6.
The first (3+3)‐annulation process of donor–acceptor cyclopropanes using synergistic catalysis is reported. The Rh2(OAc)4‐catalyzed decomposition of diazo carbonyl compounds generated carbonyl ylides in situ. These 1,3‐dipoles were converted with donor–acceptor cyclopropanes, activated by Lewis acid catalysis, to afford multiply substituted pyran scaffolds in high yield and diastereoselectivity. Extensive optimization studies enabled access to 9‐oxabicyclo[3.3.1]nonan‐2‐one and 10‐oxabicyclo[4.3.1]decen‐2‐ol cores, exploiting solvent effects on intermediate reactivity.  相似文献   

7.
A catalytic formal [5+2] cycloaddition approach to the diastereoselective synthesis of azepino[1,2‐a]indoles is reported. The reaction presumably proceeds through a Lewis acid catalyzed formal [2+2] cycloaddition of an alkene with an N‐indolyl alkylidene β‐amide ester to form a donor–acceptor cyclobutane intermediate, which subsequently undergoes an intramolecular ring‐opening cyclization. Azepine products are formed in up to 92 % yield with high degrees of diastereoselectivity (up to 34:1 d.r.).  相似文献   

8.
Abstract

A first total synthesis of a β-series ganglioside GQ1β (IV3Neu5Acα2, III6Neu5Acα2-Gg4Cer) is described. Regio- and stereoselective dimeric sialylation of the hydroxyl group at C-6 of the GalNAc residue in 2-(trimethylsilyl)ethyl O-(2-acetamido-2-deoxy-3-O-levulinyl-β-d-galactopyranosyl)-(1→4)-O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-O-2,3,6-tri-O-benzyl-β-d-glucopyranoside (3) with methyl [phenyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-2-thio-d-glycero-d-galacto-2-nonulopyranosid]onate (4) using N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) as a promoter gave the desired pentasaccharide 5 containing α-glycosidically-linked dimeric sialic acids. This was transformed into the acceptor 6 by removal of the levulinyl group. Condensation of methyl O-[methyl 5-acetamido-8-O-(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylono-1′,9-lactone)-4,7-di-O-acetyl-3,5-dideoxy-d-glycero-d-galacto-2-nonulopyranosylonate]-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) with 6, using dimethyl(methylthio)sulfonium triflate (DMTST) as a promoter, gave the desired octasaccharide derivative 8 in high yield. Compound 8 was converted into α-trichloroacetimidate 11, via reductive removal of the benzyl groups, O-acetylation, removal of the 2-(trimethylsilyl)ethyl group, and treatment with trichloroacetonitrile, which, on coupling with (2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (12), gave the β-glycoside 13. Finally, 13 was transformed, via selective reduction of the azido group, coupling with octadecanoic acid, O-deacylation, and hydrolysis of the methyl ester group, into the title ganglioside 15 in good yield.  相似文献   

9.
A highly efficient protocol for the synthesis of aminopropyl functionalized ganglioside GM1b has been described. The full protected ganglioside GM1b was obtained in 71% yield within 5 h. The key feature of the synthetic approach was the use of sialic acid donor that was with a C-5 trichloroacetamide moiety and with a dibenzyl phosphite residue as leaving group at the anomeric carbon. The sialyl donor gave high yields and excellent α-anomeric selectivities with a wide variety of glycosyl acceptors ranging from C-3 or C-6 hydroxyls of galactoside to C-6 hydroxyl of glucosaminoside by using TMSOTf as catalyst in a mixture solution of acetonitrile and methylene chloride.  相似文献   

10.
An unprecedented stereoselective [3+2] carbocyclization reaction of indole‐2‐carboxaldehydes, anilines, and electron‐rich alkenes to obtain cyclopenta[b]indoles is disclosed. This pathway is different from the well‐established Povarov reaction: the formal [4+2] cycloaddition involving the same components, which affords tetrahydroquinolines. Moreover, by simply changing the Brønsted acid catalyst, this multicomponent coupling process could be divergently directed towards the conventional Povarov pathway to produce tetrahydroquinolines or to the new pathway (anti‐Povarov) to generate cyclopenta[b]indoles. Supported by computational studies, a stepwise Mannich/Friedel–Crafts cascade is proposed for the new anti‐Povarov reaction, whereas a concerted [4+2] cycloaddition mechanism is proposed for the Povarov reaction.  相似文献   

11.
A concise approach to a Neu5Ac‐α‐2,3‐LacNPhth trisaccharide derivative was developed. First, the regio/stereoselective glycosylation between glycoside donors and glucoNPhth diol acceptors was investigated. It was found that the regioselectivity depends not only on the steric hindrance of the C2‐NPhth group and the C6‐OH protecting group of the glucosamine acceptors, but also on the leaving group and protecting group of the glycoside donors. Under optimized conditions, LacNPhth derivatives were synthesized in up to 92 % yield through a regio/stereoselective glycosylation between peracetylated‐α‐galactopyranosyl trichloroacetimidate and p‐methoxyphenyl 6‐Otert‐butyldiphenylsilyl‐2‐deoxy‐2‐phthalimido‐β‐d ‐glucopyranoside, avoiding the formation of glycosylated orthoesters and anomeric aglycon transfer. Then, the LacNPhth derivative was deacylated and then protected on the primary position by TBDPS to form a LacNPhth polyol acceptor. Finally, the Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in 48 % yield through the regio/stereoselective glycosylation between the LacNPhth polyol acceptor and a sialyl phosphite donor. Starting from d ‐glucosamine hydrochloride, the target Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in a total yield of 18.5 % over only 10 steps.  相似文献   

12.
A facile synthesis of the sialic acid oligomers alpha-(2-->5)Neu5Gc (1) is presented. Monosaccharides 2-4 with suitable functionality were used as the building blocks. After selective removal of the paired carboxyl and amine protecting groups, the fully protected oligomers were assembled through consecutive coupling of the building blocks by well established peptide coupling techniques. By this approach, fully protected oligomers as large as an octasaccharide were synthesized. Deprotection of these fully protected oligomers was conducted in two steps (LiCl in refluxing pyridine and 0.1 n NaOH) to afford the desired products in high yield. Enzymatic degradation of the octamer with neuraminidase, monitored by capillary electrophoresis (CE), was also accomplished. The stepwise exo-cleavage adducts were all well separated and identified in the CE spectrum. The strategy described here for solution-phase synthesis also provides the basis for future solid-phase synthesis of poly-alpha-(2-->5)Neu5Gc.  相似文献   

13.
Three sulfonic acid trisaccharides related to the antithrombin-binding DEFGH domain of heparin were synthesised. Trisaccharides carrying the sulfonatomethyl moiety at position 2 or 6 were prepared in high yields by [DE+F] couplings using the same disaccharide uronate donor and the appropriate sulfonic acid acceptor, respectively. The trisaccharide with a 3-deoxy-3-sulfonatomethyl function could be obtained with high efficacy by a [D+EF] coupling where the carboxylic function of the EF uronate acceptor was created at a disaccharide level.  相似文献   

14.
陈力  梁芬芬  许美凤  邢国文  邓志威 《化学学报》2009,67(12):1355-1362
详细研究了N-乙酰基-5-N,4-O-噁唑烷酮保护的唾液酸对甲基苯硫苷给体1与四种苄基或苯甲酰基保护的半乳糖甲苷二醇的唾液酸化反应, 以较高的产率(72%~89%)得到了相应的唾液酸化产物, α/β=(1.6~2.0)∶1. 在此基础上, 以乳糖为原料通过7步反应以19%的总产率制得了2,3,6,2’,6’-五-O-苯甲酰基-β-乳糖甲苷17, 使用唾液酸给体1将化合物17唾液酸化, 成功地得到神经节苷脂GM3三糖甲苷衍生物18, 产率68%, α/β=1.6∶1.  相似文献   

15.
Abstract

A stereocontrolled synthesis of I-active ganglioside analog is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2-O-benzyl-4,6-O-benzylidene-β-d-galactopyranosyl)-(1 → 4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (5) with methyl 4-O-acetyl-1,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (10) by use of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH) gave the desired trisaccharide 11, which was transformed into trisaccharide acceptor 14 via removal of the phthaloyl group followed by N-acetylation, and debenzylidenation. Glycosylation of 14 with methyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-glucopyranoside (8) gave the biantennary compound 15, which was transformed into the acceptor 16. Dimethyl(methylthio)sulfonium triflate (DMTST)-promoted coupling of 16 with methyl O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonate)-(2→3)-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (17) afforded the desired hexasaccharide 19. Coupling of the hexasaccharide acceptor 20, prepared from 19 by reductive ring-opening of benzylidene acetal, with 17 gave octasaccharide derivative 21. Compound 21 was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor 24. Condensation of 24 with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (18) gave the β-glycoside 25, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound 28.  相似文献   

16.
Abstract

A stereocontrolled synthesis of α-series ganglioside GM1α (III6Neu5AcGgOse4Cer) is described. Glycosylation of 2-(trimethylsilyl)ethyl O-(2,3,6-tri-O-benzyl-β-d-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-d-glucopyranoside (1) with the suitably protected galactosamine donor, methyl 3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-d-galactopyranoside (4) gave the desired trisaccharide, which was transformed into the trisaccharide acceptor via removal of the phthaloyl and O-acetyl groups followed by N-acetylation. Glycosylation of this acceptor with methyl 3-O-benzyl-2,4,6-tri-O-benzoyl-1-thio-β-d-galactopyranoside (7) gave the asialo GM1 saccharide derivative, which was transformed into the acceptor by removal of benzylidene group. Coupling of this gangliotetraose acceptor with phenyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-d-glcero-d-galacto-2-nonulopyranosyl)onate by use of NIS-TfOH afforded the desired GM1α oligosaccharide derivative in high yield, which was transformed, via removal of the benzyl group followed by O-acetylation, selective removal of the 2-(trimethylsilyl)ethyl group and subsequent imidate formation, into the final glycosyl donor. Condensation of this imidate derivative with (2S, 3R, 4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (15) gave the β-glycoside, which on channeling through selective reduction of azido group, coupling of the amino group with octadecanoic acid, O-deacylation and saponification of the methyl ester group, gave the title compound GM1α.  相似文献   

17.
Bromination of (E)-1-[4-(2-carboxy-vinyl)phenyl]-[1,2,3]triazole-4-carboxylic acid ethyl ester, which was synthesized in 90% yield by a Huisgen-type [3 + 2]-cycloaddition reaction between 3-(4-azidophenyl) acrylic acid and ethyl propiolate, in CHCl3 followed by a debrominative decarboxylation reaction with Et3N in DMF under microwave irradiation condition afforded stereoselective (Z)-1-(4-(2-bromovinyl)phenyl)-1,2,3-triazole-4-carboxylic acid ethyl ester in 94% yield. Treatment of (Z)-1-(4-(2-bromovinyl)phenyl)-1,2,3-triazole-4-carboxylic acid ethyl ester with EtONa in DMF afforded 1-(4-ethynylphenyl)-1,2,3-triazole-4-carboxylic acid ethyl ester in a yield of 90%.  相似文献   

18.
Abstract

We have synthesized a single repeat unit of type VIII Group B Streptococcus capsular polysaccharide, the structure of which is {L-Rhap(β1→4)-D-Glcp(β1→4)[Neu5Ac(α2→3)]-D-Galp(β→4)}n. The synthesis presented three significant synthetic challenges namely: the L-Rhap(β→4)-D-Glcp bond, the Neu5Ac(α2→3)-D-Galp bond and 3,4-D-Galp branching. The L-Rhap bond was constructed in 60% yield (α:β 1:1.2) using 4-O-acetyl-2,3-di-O-benzoyl-α-L-rhamnopyranosyl bromide 6 as donor, silver silicate as promotor and 6-O-benzyl-2,3-di-O-benzoyl-1-thio-β-D-glucopyranoside as acceptor to yield disaccharide 18. The Neu5Ac(α2→3) linkage was synthesized in 66% yield using methyl [phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-nonulopyranosid]onate as donor and triol 2-(trimethylsilyl) ethyl 6-O-benzyl-β-D-galactopyranoside as acceptor to give disaccharide 21. The 3,4-D-Galp branching was achieved by regioselective glycosylation of disaccharide diol 21 by disaccharide 18 in 28% yield to give protected tetrasaccharide 22. Tetrasaccharide 22 was deprotected to give as its 2-(trimethylsilyl)ethyl glycoside the title compound 1a. In addition the 2-(trimethylsilyl)ethyl group was cleaved and the tetrasaccharide coupled by glycosylation (via tetrasaccharide trichloroacetimidate) to a linker suitable for conjugation.

  相似文献   

19.
A new type of donor–acceptor cyclopropane reactivity has been discovered. On treatment with anhydrous GaCl3, they react as sources of even‐numbered 1,2‐ and 1,4‐dipoles instead of the classical odd‐numbered 1,3‐dipoles due to migration of positive charge from the benzyl center. This type of reactivity has been demonstrated for new reactions, namely, cyclodimerizations of donor–acceptor cyclopropanes that occur as [2+2]‐, [3+2]‐, [4+2]‐, [5+2]‐, [4+3]‐, and [5+4]‐annulations. The [4+2]‐annulation of 2‐arylcyclopropane‐1,1‐dicarboxylates to give polysubstituted 2‐aryltetralins has been developed in a preparative version that provides exceedingly high regio‐ and diastereoselectivity and high yields. The strategy for selective hetero‐combination of donor–acceptor cyclopropanes was also been developed. The mechanisms of the discovered reactions involving the formation of a comparatively stable 1,2‐ylide intermediate have been studied.  相似文献   

20.
Cycloadditions of strained carbocycles promoted by Lewis acids are powerful methods to construct heterocyclic frameworks. In fact, the formal [3+2] cycloadditions of donor–acceptor (DA) cyclopropanes with nitriles has seen particular success in synthesis. In this work, we report on the first [4+2] cycloaddition of nitriles with DA cyclobutanes by Lewis acid activation. Tetrahydropyridine derivatives were obtained in up to 91 % yield from various aryl-activated cyclobutane diesters and aliphatic or aromatic nitriles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号