首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《化学:亚洲杂志》2018,13(16):2054-2059
The rational design and development of efficient and affordable enzyme‐free electrocatalysts for electrochemical detection are of great significance for the large‐scale applications of sensor materials, and have aroused increasing research interest. Herein, we report that a typical polyoxometalate (POM)‐based metal–organic framework (NENU5) that was hybridized with ketjenblack (KB) was a highly efficient electrochemical catalyst that could be used for the highly sensitive nonenzymatic detection of H2O2. The composite catalyst exhibited superb electrochemical detection performance towards H2O2, including a broad linear range from 10–50 mm , a low detection limit of 1.03 μm , and a high sensitivity of 33.77 μA mm −1, as well as excellent selectivity and stability. These excellent electrocatalytic properties should be attributed to the unique redox activity of the POM, the high specific surface area of the metal–organic framework (MOF), the strong conductivity of KB, and the synergistic effects of the multiple components in the composites during the electrolysis of H2O2. This work provides a new pathway for the exploration of nonenzymatic electrochemical sensors.  相似文献   

2.
3.
Reaction of the divacant polyoxometalate K8[γ‐XW10O36] (X=Si, Ge) with two equivalents of the metal‐nitrido precursor Cs2[RuVINCl5], at room temperature in water, produces K2(Me2NH2)2H2[γ‐XW10O38{RuN}2], X=Si ( DMA ‐ 1 a ) or Ge ( DMA ‐ 1 b ). The X‐ray crystal structures of both complexes show monomeric complexes with highly unusual vicinal terminal metal‐nitrido units. The Ru?N bond lengths are 1.594(10) and 1.612(11) Å in 1 a and 1 b , respectively. EXAFS studies confirmed the key structural assignments from X‐ray crystallography. The XANES spectrum of DMA‐1 a , diamagnetism, NMR (29Si and 183W) chemical shifts, voltammetric behavior, reductive titrations with [PW12O40]4?, and computational data are all consistent with d2 RuVI centers in these complexes. The FT‐IR and Raman spectra show the expected vibrational modes of the {γ‐XW10} unit and the Ru?N stretch at 1080 cm?1, respectively. Interestingly, reduction of DMA‐1 a by 4 equivalents of [PW12O40]4? produces NH3 in nearly quantitative yield. Cyclic voltammetry versus pH and calculations provide the energetics for the possible two‐electron reduction and two‐proton addition processes in this reaction.  相似文献   

4.
A series of platinum(II) terpyridine complexes with L ‐valine‐modified alkynyl ligands has been synthesized. A complex with an unsubstituted terpyridine and one valine unit on the alkynyl is shown to be capable of gel formation, which is in sharp contrast to the gelation properties of the corresponding organic counterparts. Upon sol–gel transition, a drastic color change from yellow to red is observed, which is indicative of the involvement of Pt ??? Pt interactions. Through the concentration‐ and temperature‐dependent UV/Vis absorption, emission, circular dichroism, and 1H NMR studies, the contribution of hydrogen bonding, Pt ??? Pt and π–π stacking interactions as driving forces for gelation have been established, and the importance of maintaining a delicate balance between different intermolecular forces has also been illustrated.  相似文献   

5.
Metal-coordinated frameworks derived from small peptidic ligands have received much attention thanks to peptides’ vast structural and functional diversity. Various peptides with partial conformational preferences have been used to build metal–peptide frameworks, however, the use of conformationally constrained β-peptide foldamers has not been explored yet. Herein we report the first metal-coordination-mediated assembly of β-peptide foldamers with 12-helical folding propensity. The coordination of Ag+ to the terminal pyridyl moieties afforded a set of metal–peptide frameworks with unique entangled topologies. Interestingly, formation of the network structures was accompanied by notable conformational distortions of the foldamer ligands. As the first demonstration of new metal–peptide frameworks built from modular β-peptide foldamers, we anticipate that this work will be an important benchmark for further structural evolution and mechanistic investigation.  相似文献   

6.
Reaction of [PdClMe(P^N)2] with SnCl2 followed by Cl‐abstraction leads to apparent Pd?C bond activation, resulting in methylstannylene species trans‐[PdCl{(P^N)2SnClMe}][BF4] (P^N=diaryl phosphino‐N‐heterocycle). In contrast, reaction of Pt analogues with SnCl2 leads to Pt?Cl bond activation, resulting in methylplatinum species trans‐[PtMe{(P^N)2SnCl2}][BF4]. Over time, they isomerise to methylstannylene species, indicating that both kinetic and thermodynamic products can be isolated for Pt, whereas for Pd only methylstannylene complexes are isolated. Oxidative addition of RSnCl3 (R=Me, Bu, Ph) to M0 precursors (M=Pd or Pt) in the presence of P^N ligands results in diphosphinostannylene pincer complexes trans‐[MCl{(P^N)2SnCl(R)}][SnCl4R], which are structurally similar to the products from SnCl2 insertion. This showed that addition of RSnCl3 to M0 results in formal Sn?Cl bond oxidative addition. A probable pathway of activation of the tin reagents and formation of different products is proposed and the relevancy of the findings for Pd and Pt catalysed processes that use SnCl2 as a co‐catalyst is discussed.  相似文献   

7.
8.
Metalloradical species [Co2Fv(CO)4].+ ( 1 .+, Fv=fulvalenediyl) and [Co2Cp2(CO)4].+ ( 2 .+, Cp=η5‐C5H5), formed by one‐electron oxidations of piano‐stool cobalt carbonyl complexes, can be stabilized with weakly coordinating polyfluoroaluminate anions in the solid state. They feature a supported and an unsupported (i.e. unbridged) cobalt–cobalt three‐electron σ bond, respectively, each with a formal bond order of 0.5 (hemi‐bond). When Cp is replaced by bulkier Cp* (Cp*=η5‐C5Me5), an interchange between an unsupported radical [Co2Cp*2(CO)4].+ (anti‐ 3 .+) and a supported radical [Co2Cp*2(μ‐CO)2(CO)2].+ (trans‐ 3 .+) is observed in solution, which cocrystallize and exist in the crystal phase. 2 .+ and anti‐ 3 .+ are the first stable thus isolable examples that feature an unsupported metal–metal hemi‐bond, and the coexistence of anti‐ 3 .+ and trans‐ 3 .+ in one crystal is unprecedented in the field of dinuclear metalloradical chemistry. The work suggests that more stable metalloradicals of metal–metal hemi‐bonds may be accessible by using metal carbonyls together with large and weakly coordinating polyfluoroaluminate anions.  相似文献   

9.
Metal–organic frameworks (MOFs) provide a tunable platform for hierarchically integrating multiple components to effect synergistic functions that cannot be achieved in solution. Here we report the encapsulation of a Ni‐containing polyoxometalate (POM) [Ni4(H2O)2(PW9O34)2]10? ( Ni4P2 ) into two highly stable and porous phosphorescent MOFs. The proximity of Ni4P2 to multiple photosensitizers in Ni4P2 @MOF allows for facile multi‐electron transfer to enable efficient visible‐light‐driven hydrogen evolution reaction (HER) with turnover numbers as high as 1476. Photophysical and electrochemical studies established the oxidative quenching of the excited photosensitizer by Ni4P2 as the initiating step of HER and explained the drastic catalytic activity difference of the two POM@MOFs. Our work shows that POM@MOF assemblies not only provide a tunable platform for designing highly effective photocatalytic HER catalysts but also facilitate detailed mechanistic understanding of HER processes.  相似文献   

10.
11.
12.
13.
Fully utilizing solar energy for catalysis requires the integration of conversion mechanisms and therefore delicate design of catalyst structures and active species. Herein, a MOF crystal engineering method was developed to controllably synthesize a copper–ceria catalyst with well‐dispersed photoactive Cu‐[O]‐Ce species. Using the preferential oxidation of CO as a model reaction, the catalyst showed remarkably efficient and stable photoactivated catalysis, which found practical application in feed gas treatment for fuel cell gas supply. The coexistence of photochemistry and thermochemistry effects contributes to the high efficiency. Our results demonstrate a catalyst design approach with atomic or molecular precision and a combinatorial photoactivation strategy for solar energy conversion.  相似文献   

14.
The design of structurally well‐defined anionic molecular metal–oxygen clusters, polyoxometalates (POMs), leads to inorganic receptors with unique and tunable properties. Herein, an α‐Dawson‐type silicotungstate, TBA8[α‐Si2W18O62] ? 3 H2O ( II ) that possesses a ?8 charge was successfully synthesized by dimerization of a trivacant lacunary α‐Keggin‐type silicotungstate TBA4H6[α‐SiW9O34] ? 2 H2O ( I ) in an organic solvent. POM II could be reversibly protonated (in the presence of acid) and deprotonated (in the presence of base) inside the aperture by means of intramolecular hydrogen bonds with retention of the POM structure. In contrast, the aperture of phosphorus‐centered POM TBA6[α‐P2W18O62]?H2O ( III ) was not protonated inside the aperture. The density functional theory (DFT) calculations revealed that the basicities and charges of internal μ3‐oxygen atoms were increased by changing the central heteroatoms from P5+ to Si4+, thereby supporting the protonation of II . Additionally, II showed much higher catalytic performance for the Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde than I and III .  相似文献   

15.
The bis(diphenylphosphino)methane (dppm)‐bridged dinuclear cycloplatinated complex {[Pt(L)]2(μ‐dppm)}2+ (Pt2 ? dppm; HL: 2‐phenyl‐6‐(1H‐pyrazol‐3‐yl)‐pyridine) demonstrates interesting reversible “pivot‐hinge”‐like intramolecular motions in response to the protonation/deprotonation of L. In its protonated “closed” configuration, the two platinum(II) centers are held in position by intramolecular d8–d8 Pt–Pt interaction. In its deprotonated “open” configuration, such Pt–Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)]2(μ‐dchpm)}2+ (Pt2 ? dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic π–π interactions between the phenyl moieties of the μ‐dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt–Pt interaction in Pt2 ? dppm. In the case of Pt2 ? dchpm, spectroscopic and spectrofluorometric titrations as well as X‐ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room‐temperature triplet metal–metal‐to‐ligand charge‐transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1‐pyrazolyl‐N moiety and the methylene CH and phenyl C–H of the μ‐dppm. The “open” configuration of the deprotonated Pt2 ? dppm was estimated to be 19 kcal mol?1 more stable than its alternative “closed” configuration. On the other hand, the open configuration of the deprotonated Pt2 ? dchpm was 6 kcal mol?1 less stable than its alternative closed configuration.  相似文献   

16.
The addition of Sn and Zn ions to [Ge9] clusters by reaction of [Ge9]4? with SnPh2Cl2, ZnCp*2 (Cp*=pentamethylcyclopentadienyl), or Zn2[HC(Ph2P=NPh)2]2 is reported. The resulting Sn‐ and Zn‐bridged clusters [(Ge9)M(Ge9)]q? (M=Sn, q=4; M=Zn, q=6) display various coordination modes. The M atoms that coordinate to the open square of a C4v‐symmetric [Ge9] cluster form strong covalent multicenter M?Ge bonds, in contrast to the M atoms coordinating to triangular cluster faces. Molecular orbital analyses show that the M atoms of the Ge9M fragments coordinate to a second [Ge9] cluster with similar orbitals but in different ways. The [Ge9Sn]2?unit donates two electrons to the triangular face of a second [Ge9]2? cluster with D3h symmetry, whereas [Ge9Zn]2?acts as an electron acceptor when interacting with the triangular face of a D3h‐symmetric [Ge9]4? unit.  相似文献   

17.
The first organometallic BOPHY (BOPHY=bis(difluoroboron)‐1,2‐bis{(pyrrol‐2‐yl)methylene}hydrazine) containing two ferrocene substituents was prepared through a Knoevenagel condensation between tetramethyl substituted BOPHY and ferrocene carboxaldehyde. An unprecedentedly strong long‐range (≈17.2 Å) metal–metal coupling in this new complex was investigated using electrochemical, spectroelectrochemical, and chemical oxidation methods. Electrochemical data is indicative of a 200 mV separation between the first and the second ferrocene‐centered oxidation processes. Formation of the mixed‐valence states and appearance and disappearance of two NIR bands were observed during stepwise oxidation of the first organometallic BOPHY. The electronic structure and the nature of the excited states in this new chromophore were studied by DFT and TDDFT calculations.  相似文献   

18.
19.
20.
Water‐soluble cationic alkynylplatinum(II) 2,6‐bis(benzimidazol‐2′‐yl)pyridine (bzimpy) complexes have been demonstrated to undergo supramolecular assembly with anionic polyelectrolytes in aqueous buffer solution. Metal–metal‐to‐ligand charge transfer (MMLCT) absorptions and triplet MMLCT (3MMLCT) emissions have been found in UV/Vis absorption and emission spectra of the electrostatic assembly of the complexes with non‐conjugated polyelectrolytes, driven by Pt???Pt and π–π interactions among the complex molecules. Interestingly, the two‐component ensemble formed by [Pt(bzimpy‐Et){C?CC6H4(CH2NMe3‐4)}]Cl2 ( 1 ) with para‐linked conjugated polyelectrolyte (CPE), PPE‐SO3?, shows significantly different photophysical properties from that of the ensemble formed by 1 with meta‐linked CPE, mPPE‐Ala. The helical conformation of mPPE‐Ala allows the formation of strong mPPE‐Ala– 1 aggregates with Pt???Pt, electrostatic, and π–π interactions, as revealed by the large Stern–Volmer constant at low concentrations of 1 . Together with the reasonably large Förster radius, large HOMO–LUMO gap and high triplet state energy of mPPE‐Ala to minimize both photo‐induced charge transfer (PCT) and Dexter triplet energy back‐transfer (TEBT) quenching of the emission of 1 , efficient Förster resonance energy transfer (FRET) from mPPE‐Ala to aggregated 1 molecules and strong 3MMLCT emission have been found, while the less strong PPE‐SO3?– 1 aggregates and probably more efficient PCT and Dexter TEBT quenching would account for the lack of 3MMLCT emission in the PPE‐SO3?– 1 ensemble.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号