首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Upon complexation with PdII ions, precisely designed strandlike ligands with two tris(3,5‐pyridine) units at both terminals were assembled, with the aid of a linear template molecule, into a discrete tubular complex with a length of 3.5 nm. The high stability and the well‐defined structure of the coordination nanotube were revealed by NMR spectroscopy, cold‐spray ionization MS, and single‐crystal X‐ray analysis. Guest lengths were discriminated by the tube: When the association of strandlike guest molecules, in which two biphenylene units are linked with an (OCH2CH2)n linker, were compared, the tube selectively recognized an appropriate guest whose length was comparable to that of the tube. Tetrathiafulvalene (TTF)‐terminated linear guests were directly oxidized to TTF2+ in the tube, but reduced stepwise via TTF+? outside the tube.  相似文献   

3.
A highly luminescent Zn4L6 tetrahedron is reported with 3.8 nm perylene bisimide edges and hexadentate ZnII–imine chelate vertices. Replacing FeII and monoamines commonly utilized in subcomponent self‐assembly with ZnII and tris(2‐aminoethyl)amine provides access to a metallosupramolecular host with the rare combination of structural integrity at concentrations <10?7 mol L?1 and an exceptionally high fluorescence quantum yield of Φem=0.67. Encapsulation of multiple perylene or coronene guest molecules is accompanied by strong luminescence quenching. We anticipate this self‐assembly strategy may be generalized to improve access to brightly fluorescent coordination cages tailored for host–guest light‐harvesting, photocatalysis, and sensing.  相似文献   

4.
The functionalization of nanoporous zeolite L crystals with β‐cyclodextrin (CD) has been demonstrated. The zeolite surface was first modified with amino groups by using two different aminoalkoxysilanes. Then, 1,4‐phenylene diisothiocyanate was reacted with the amino monolayer and used to bind CD heptamine by using its remaining isothiocyanate groups. The use of the different aminoalkoxysilanes, 3‐aminopropyl dimethylethoxysilane (APDMES) and 3‐aminopropyl triethoxysilane (APTES), led to drastic differences in uptake and release properties. Thionine was found to be absorbed and released from amino‐ and CD‐functionalized zeolites when APDMES was used, whereas functionalization by APTES led to complete blockage of the zeolite channels. Fluorescence microscopy showed that the CD groups covalently attached to the zeolite crystals could bind adamantyl‐modified dyes in a specific and reversible manner. This strategy allowed the specific immobilization of His‐tagged proteins by using combined host–guest and His‐tag‐Ni‐nitrilotriacetic acid (NTA) coordination chemistry. Such multifunctional systems have the potential for encapsulation of drug molecules inside the zeolite pores and non‐covalent attachment of other (for example, targeting) ligand molecules on its surface.  相似文献   

5.
6.
7.
Pentacyclic triterpenoids, a class of naturally bioactive products having multiple functional groups, unique chiral centers, rigid skeletons, and good biocompatibility, are ideal building blocks for fabricating versatile supramolecular structures. In this research, the natural pentacyclic triterpenoid glycyrrhetinic acid (GA) was used as a guest molecule for β‐cyclodextrin (β‐CD) to form a GA/β‐CD (1:1) inclusion complex. By means of GA and β‐CD pendant groups in N,N′‐dimethylacrylamide copolymers, a supramolecular polymer hydrogel can be physically cross‐linked by host–guest interactions between GA and β‐CD moieties. Moreover, self‐healing of this hydrogel was observed and confirmed by step‐strain rheological measurements, whereby the maximum storage modulus occurred at a [GA]/[β‐CD] molar ratio of 1:1. Additionally, these polymers displayed outstanding biocompatibility. The introduction of a natural pentacyclic triterpenoid into a hydrogel system not only provides a biocompatible guest–host complementary GA/β‐CD pair, but also makes this hydrogel an attractive candidate for tissue engineering.  相似文献   

8.
《化学:亚洲杂志》2017,12(17):2231-2236
Thermoresponsive water‐soluble polymers are of great importance since they typically show a lower critical solution temperature (LCST) in aqueous media. In this research, the LCST change in broad temperature ranges of copolymers composed of natural glycyrrhetinic acid (GA)‐based methacrylate and N ,N′ ‐dimethylacrylamides (DMAs) was investigated as a function of the concentration and the content of GA pendants. By complexation of GA pendants with β‐cyclodextrin (β‐CD), a side‐chain polypseudorotaxane was obtained, which exhibited a significant increase in the LCST of copolymers. Moreover, the precisely reversible control of the LCST behavior was realized through adding a competing guest molecule, sodium 1‐admantylcarboxylate. This work illustrates a simple and effective approach to endow water‐soluble polymers with broad temperature tunability and helps us further understand the effect of a biocompatible host–guest complementary β‐CD/GA pair on the thermoresponsive process.  相似文献   

9.
A novel pH‐switchable macroscopic assembly is reported using alginate‐based hydrogels functionalized with host (α‐cyclodextrin, αCD) and guest (diethylenetriamine, DETA) moieties. Since the interaction of αCD and DETA is pH sensitive, the host hydrogel and guest hydrogel could adhere together when the pH is 11.5 and separate when the pH is 7.0. Furthermore, this pH‐controlled adhesion and dissociation shows a good reversibility. The host and guest polymers have good biocompatibility; therefore, this pH‐sensitive macroscopic assembly shows great potential in biotechnological and biomedical applications.

  相似文献   


10.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

11.
12.
13.
Some nanoparticles, such as quantum dots (QDs), are widely used in the biological and biomedical fields due to their unique optical properties. However, little is currently known about the interaction between these nanoparticles and biomolecules. Herein, we systemically investigated the interaction between chaperonin GroEL and water‐soluble CdTe QDs based on fluorescence correlation spectroscopy (FCS), capillary electrophoresis, and fluorescence spectrometry. We observed that some water‐soluble CdTe QDs were able to enter the inner cavity of GroEL and formed an inclusion complex after the activation of chaperonin GroEL with ATP. The inclusion of GroEL was size‐selective to QDs and only small QDs were able to enter the inner cavity. The inclusion could suppress the fluorescence quenching of the QDs. Meanwhile, we evaluated the association constant between chaperonin GroEL and CdTe QDs by FCS. Our results further demonstrated that FCS was a very useful tool for study of the interaction of QDs and biomolecules.  相似文献   

14.
A study of the spin‐crossover (SCO) behavior of the tridimensional porous coordination polymer {Fe(bpac)[Pt(CN)4]} (bpac=bis(4‐pyridyl)acetylene) on adsorption of different mono‐ and polyhalobenzene guest molecules is presented. The resolution of the crystal structure of {Fe(bpac)[Pt(CN)4]} ? G (G=1,2,4‐trichlorobenzene) shows preferential guest sites establishing π???π stacking interactions with the host framework. These host–guest interactions may explain the relationship between the modification of the SCO behavior and both the chemical nature of the guest molecule (electronic factors) and the number of adsorbed molecules (steric factors).  相似文献   

15.
Buckle up! The dimerization of small fluorescent guests is strongly enhanced in presence of a cyclodextrin host. The host cavity acts like a belt to assist the self‐assembly of guests (see picture). Small variations in the guest structure have significant influence on the stability and geometry of the aggregates.

  相似文献   


16.
A new strategy is reported for multicolor fluorescence writing on thin solid films with mechanical forces. This concept is illustrated by the use of a green‐fluorescent pentiptycene derivative 1 , which forms variably colored fluorescent exciplexes: a change from yellow to red was observed with anilines, and fluorescence quenching (a change to black) occurred in the presence of benzoquinone. Mechanical forces, such as grinding and shearing, induced a crystalline‐to‐amorphous phase transition in both the pristine and guest‐adsorbed solids that led to a change in the fluorescence color (mechanofluorochromism) and a memory of the resulting color. Fluorescence drawings of five or more colors were created on glass or paper and could be readily erased by exposure to air and dichloromethane fumes. The structural and mechanistic aspects of the observations are also discussed.  相似文献   

17.
18.
Recent advances in host–guest chemistry have significantly influenced the construction of supramolecular soft biomaterials. The highly selective and non‐covalent interactions provide vast possibilities of manipulating supramolecular self‐assemblies at the molecular level, allowing a rational design to control the sizes and morphologies of the resultant objects as carrier vehicles in a delivery system. In this Focus Review, the most recent developments of supramolecular self‐assemblies through host–guest inclusion, including nanoparticles, micelles, vesicles, hydrogels, and various stimuli‐responsive morphology transition materials are presented. These sophisticated materials with diverse functions, oriented towards therapeutic agent delivery, are further summarized into several active domains in the areas of drug delivery, gene delivery, co‐delivery and site‐specific targeting deliveries. Finally, the possible strategies for future design of multifunctional delivery carriers by combining host–guest chemistry with biological interface science are proposed.  相似文献   

19.
20.
Despite the remarkable progress made in controllable self‐assembly of stimuli‐responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self‐assembly of SSPs. Herein, the design and synthesis of a dual‐stimuli thermo‐ and photoresponsive Y‐shaped supramolecular polymer (SSP2) with two adjacent β‐cyclodextrin/azobenzene (β‐CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β‐CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self‐assemblies with a higher binding‐site distribution density; exhibits a flower‐like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug‐release behavior than those observed with SSP1 self‐assemblies. The host–guest binding‐site‐tunable self‐assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self‐assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self‐assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号