首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d -maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.  相似文献   

2.
Detergents serve as useful tools for membrane protein structural and functional studies. Their amphipathic nature allows detergents to associate with the hydrophobic regions of membrane proteins whilst maintaining the proteins in aqueous solution. However, widely used conventional detergents are limited in their ability to maintain the structural integrity of membrane proteins and thus there are major efforts underway to develop novel agents with improved properties. We prepared mesitylene‐cored glucoside amphiphiles (MGAs) with three alkyl chains and compared these agents with previously developed xylene‐linked maltoside agents (XMAs) with two alkyl chains and a conventional detergent (DDM). When these agents were evaluated for four membrane proteins including a G protein‐coupled receptor (GPCR), some agents such as MGA‐C13 and MGA‐C14 resulted in markedly enhanced stability of membrane proteins compared to both DDM and the XMAs. This favourable behaviour is due likely to the increased hydrophobic density provided by the extra alkyl chain. Thus, this study not only describes new glucoside agents with potential for membrane protein research, but also introduces a new detergent design principle for future development.  相似文献   

3.
β‐Adrenergic receptors are important targets for drug discovery. We have developed a new β1‐adrenergic receptor cell membrane chromatography (β1AR‐CMC) with offline ultra‐performance LC (UPLC) and MS method for screening active ingredients from traditional Chinese medicines. In this study, Chinese hamster ovary‐S cells with high β1AR expression levels were established and used to prepare a cell membrane stationary phase in a β1AR‐CMC model. The retention fractions were separated and identified by the UPLC–MS system. The screening results found that isoimperatorin from Rhizoma et Radix Notopterygii was the targeted component that could act on β1AR in similar manner of metoprolol as a control drug. In addition, the biological effects of active component were also investigated in order to search for a new type of β1AR antagonist. It will be a useful method for drug discovery as a leading compound resource.  相似文献   

4.
The conformational dynamics of a macromolecule can be modulated by a number of factors, including changes in environment, ligand binding, and interactions with other macromolecules, among others. We present a method that quantifies the differences in macromolecular conformational dynamics and automatically extracts the structural features responsible for these changes. Given a set of molecular dynamics (MD) simulations of a macromolecule, the norms of the differences in covariance matrices are calculated for each pair of trajectories. A matrix of these norms thus quantifies the differences in conformational dynamics across the set of simulations. For each pair of trajectories, covariance difference matrices are parsed to extract structural elements that undergo changes in conformational properties. As a demonstration of its applicability to biomacromolecular systems, the method, referred to as DIRECT‐ID, was used to identify relevant ligand‐modulated structural variations in the β2‐adrenergic (β2AR) G‐protein coupled receptor. Micro‐second MD simulations of the β2AR in an explicit lipid bilayer were run in the apo state and complexed with the ligands: BI‐167107 (agonist), epinephrine (agonist), salbutamol (long‐acting partial agonist), or carazolol (inverse agonist). Each ligand modulated the conformational dynamics of β2AR differently and DIRECT‐ID analysis of the inverse‐agonist vs. agonist‐modulated β2AR identified residues known through previous studies to selectively propagate deactivation/activation information, along with some previously unidentified ligand‐specific microswitches across the GPCR. This study demonstrates the utility of DIRECT‐ID to rapidly extract functionally relevant conformational dynamics information from extended MD simulations of large and complex macromolecular systems. © 2015 Wiley Periodicals, Inc.  相似文献   

5.
The computational approach applicable for the molecular dynamics (MD)‐based techniques is proposed to predict the ligand–protein binding affinities dependent on the ligand stereochemistry. All possible stereoconfigurations are expressed in terms of one set of force‐field parameters [stereoconfiguration‐independent potential (SIP)], which allows for calculating all relative free energies by only single simulation. SIP can be used for studying diverse, stereoconfiguration‐dependent phenomena by means of various computational techniques of enhanced sampling. The method has been successfully tested on the β2‐adrenergic receptor (β2‐AR) binding the four fenoterol stereoisomers by both metadynamics simulations and replica‐exchange MD. Both the methods gave very similar results, fully confirming the presence of stereoselective effects in the fenoterol‐β2‐AR interactions. However, the metadynamics‐based approach offered much better efficiency of sampling which allows for significant reduction of the unphysical region in SIP. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Disulfide-containing detergents (DCDs) are introduced, which contain a disulfide bond in the hydrophobic tail. DCDs form smaller micelles than corresponding detergents with linear hydrocarbon chains, while providing good solubilization and reconstitution of membrane proteins. The use of this new class of detergents in structural biology is illustrated with solution NMR spectra of the human G protein-coupled receptor A2AAR, which is an α-helical protein, and the β-barrel protein OmpX from E. coli.  相似文献   

7.
Oriented covalent immobilized β2‐adrenergic receptor (β2‐AR) CE (OIRCE) was developed to determine the interactions between a set of natural extracts of Radix Paeoniae Rubra (NERPR) and β2‐AR, and to predict the activity of NERPR. The inner capillary surface is chemically bonded with stable β2‐AR coating via microwave‐assisted technical synthesis. The modified capillaries were characterized via infrared spectroscopy and fluorescence microscopy. Furthermore, the bonding amounts of β2‐AR were first obtained via fluorescence spectroscopy method. In determining the amount of bonded β2‐AR, the regression equation A  =  576 707C + 35.449 and the correlation coefficient 0.9995 were obtained. This result revealed an excellent linear relationship in the range of 2 × 10?4 mg/mL to 1 × 10?3 mg/mL. The normalized capacity factor (KRCE) was obtained using OIRCE in evaluating drug–receptor interactions. Related theories and equations were used to calculate KRCE values from apparent migration times of a solute and EOF. The order of KRCE and the binding constant (Kb) values between drugs and β2‐AR was well consistent. The results confirmed that the OIRCE and KRCE values can be effectually used to investigate drug‐receptor interactions, and OIRCE has the potential to predict drug activity and to select leading compounds from natural chemicals.  相似文献   

8.
G‐protein‐coupled receptors (GPCRs) exist in conformational equilibrium between active and inactive states, and the former population determines the efficacy of signaling. However, the conformational equilibrium of GPCRs in lipid bilayers is unknown owing to the low sensitivities of their NMR signals. To increase the signal intensities, a deuteration method was developed for GPCRs expressed in an insect cell/baculovirus expression system. The NMR sensitivities of the methionine methyl resonances from the β2‐adrenergic receptor (β2AR) in lipid bilayers of reconstituted high‐density lipoprotein (rHDL) increased by approximately 5‐fold upon deuteration. NMR analyses revealed that the exchange rates for the conformational equilibrium of β2AR in rHDLs were remarkably different from those measured in detergents. The timescales of GPCR signaling, calculated from the exchange rates, are faster than those of receptor tyrosine kinases and thus enable rapid neurotransmission and sensory perception.  相似文献   

9.
G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and serve as primary targets of approximately one-third of currently marketed drugs. In particular, adenosine A1 receptor (A1AR) is an important therapeutic target for treating cardiac ischemia–reperfusion injuries, neuropathic pain, and renal diseases. As a prototypical GPCR, the A1AR is located within a phospholipid membrane bilayer and transmits cellular signals by changing between different conformational states. It is important to elucidate the lipid–protein interactions in order to understand the functional mechanism of GPCRs. Here, all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method were performed on both the inactive (antagonist bound) and active (agonist and G-protein bound) A1AR, which was embedded in a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid bilayer. In the GaMD simulations, the membrane lipids played a key role in stabilizing different conformational states of the A1AR. Our simulations further identified important regions of the receptor that interacted distinctly with the lipids in highly correlated manner. Activation of the A1AR led to differential dynamics in the upper and lower leaflets of the lipid bilayer. In summary, GaMD enhanced simulations have revealed strongly coupled dynamics of the GPCR and lipids that depend on the receptor activation state. © 2019 Wiley Periodicals, Inc.  相似文献   

10.
We prepared an amphiphile with a penta‐phenylene lipophilic group and a branched trimaltoside head group. This new agent, designated penta‐phenylene maltoside (PPM), showed a marked tendency to self‐assembly into micelles via strong aromatic–aromatic interactions in aqueous media, as evidenced by 1H NMR spectroscopy and fluorescence studies. When utilized for membrane protein studies, this new agent was superior to DDM, a gold standard conventional detergent, in stabilizing multiple proteins long term. The ability of this agent to form aromatic–aromatic interactions is likely responsible for enhanced protein stabilization when associated with a target membrane protein.  相似文献   

11.
Human A3 adenosine receptor (hA3AR) is a membrane‐bound G protein‐coupled receptor implicated in a number of severe pathological conditions, including cancer, in which it acts as a potential therapeutic target. To derive structure–activity relationships on pyrazolo–triazolo–pyrimidine (PTP)‐based A3AR antagonists, we developed a new class of organometallic inhibitors through replacement of the triazolo moiety with an organoruthenium fragment. The objective was to introduce by design structural diversity into the PTP scaffold in order to tune their binding efficacy toward the target receptor. These novel organoruthenium antagonists displayed good aquatic stability and moderate binding affinity toward the hA3 receptor in the low micromolar range. The assembly of these complexes through a template‐driven approach with selective ligand replacement at the metal center to control their steric and receptor‐binding properties is discussed.  相似文献   

12.
An open‐tubular capillary electrochromatography method has been developed for the determination of binding constants between β2‐adrenergic receptor (β2‐AR) and seven drugs. β2‐AR was oriented immobilized onto one part of inner surface of capillary via microwave‐assisted technical synthesis. According to the linear relationship between coating length and the apparent mobility of analyte, the binding constant (Kb) can be obtained by related theories and equations. The order of Kb values between drugs such as adrenaline hydrochloride, norepinephrine bitartrate, and propranolol hydrochloride with β2‐AR is well consistent with that reported in the literature. By the method, Kb values between four extracts of Radix Paeoniae Rubra and β2AR were also successfully obtained. Subsequently, computer models were applied to interpret the CEC experiments. And the results proved to be in good agreement with the method. The work, herein, demonstrates the potential of the method in drug‐receptor affinity interactions evaluation and screening of lead compounds from natural sources.  相似文献   

13.
We present in‐membrane chemical modification (IMCM) for obtaining selective chromophore labeling of intracellular surface cysteines in G‐protein‐coupled receptors (GPCRs) with minimal mutagenesis. This method takes advantage of the natural protection of most cysteines by the membrane environment. Practical use of IMCM is illustrated with the site‐specific introduction of chromophores for NMR and fluorescence spectroscopy in the human κ‐opioid receptor (KOR) and the human A2A adenosine receptor (A2AAR). IMCM is applicable to a wide range of in vitro studies of GPCRs, including single‐molecule spectroscopy, and is a promising platform for in‐cell spectroscopy experiments.  相似文献   

14.
Free solution capillary electrophoresis with UV detection is here used to retrieve information on the conformational changes of wild‐type β2‐microglobulin and a series of naturally and artificially created variants known to have different stability and amyloidogenic potential. Under nondenaturing conditions, the resolution of at least two folding conformers at equilibrium is obtained and a third species is detected for the less stable isoforms. Partial denaturation by using chaotropic agents such as acetonitrile or trifluoroethanol reveals that the separated peaks are at equilibrium, as the presence of less structured species is either enhanced or induced at the expenses of the native form. Reproducible CE data allow to obtain an interesting semiquantitative correlation between the peak areas observed and the protein stability. Thermal unfolding over the range 25–42°C is induced inside the capillary for the two pathogenic proteins (wtβ2‐microglobulin and D76N variant): the large differences observed upon small temperature variation draw attention on the robustness of analytical methods when dealing with proteins prone to misfolding and aggregation.  相似文献   

15.
G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The A1AR and A3AR preferentially couple to the Gi/o proteins, while the A2AAR and A2BAR prefer coupling to the Gs proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.  相似文献   

16.
The dopamine D2 receptor, belonging to the class A G protein-coupled receptors (GPCRs), is an important drug target for several diseases, including schizophrenia and Parkinson’s disease. The D2 receptor can be activated by the natural neurotransmitter dopamine or by synthetic ligands, which in both cases leads to the receptor coupling with a G protein. In addition to receptor modulation by orthosteric or allosteric ligands, it has been shown that lipids may affect the behaviour of membrane proteins. We constructed a model of a D2 receptor with a long intracellular loop (ICL3) coupled with Giα1 or Giα2 proteins, embedded in a complex asymmetric membrane, and simulated it in complex with positive, negative or neutral allosteric ligands. In this study, we focused on the influence of ligand binding and G protein coupling on the membrane–receptor interactions. We show that there is a noticeable interplay between the cell membrane, G proteins, D2 receptor and its modulators.  相似文献   

17.
CHARMM‐GUI Membrane Builder, http://www.charmm‐gui.org/input/membrane , is a web‐based user interface designed to interactively build all‐atom protein/membrane or membrane‐only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance‐based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM‐GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
19.
Integrins are important membrane receptors that form focal adhesions with the extracellular matrix and are transmembrane signaling proteins. We demonstrate that nanoparticles functionalized with c‐RGDfC ligands bind to intact cell membranes and selectively enhance the amino acid signals of the integrin receptor when coupled with tip‐enhanced Raman scattering (TERS) detection. Controlling the plasmonic interaction between the functionalized nanoparticle and the TERS tip provides a clear Raman signal from αVβ3 integrins in the cell membrane that matches the signal of the purified integrin receptor. Random aggregation of nanoparticles on the cell does not provide the same spectral information. Chemical characterization of membrane receptors in intact cellular membranes is important for understanding membrane signaling and drug targeting. These results provide a new method to investigate the chemical interactions associated with ligand binding to membrane receptors in cells.  相似文献   

20.
Amphipathic agents called detergents serve as membrane‐mimetic systems to maintain the native structures of membrane proteins during their manipulation. However, membrane proteins solubilized in conventional detergents tend to undergo denaturation and aggregation, necessitating the development of novel amphipathic agents with enhanced properties. Here we describe several new amphiphiles that contain an N‐oxide group as the hydrophilic portion. The new amphiphiles have been evaluated for the ability to solubilize and stabilize a fragile multi‐subunit assembly from biological membranes. We found that cholate‐based agents were promising in supporting retention of the native protein quaternary structure, while deoxycholate‐based amphiphiles were highly efficient in extracting/solubilizing the intact superassembly from the native membrane. Monitoring superassembly solubilization and stabilization as a function of variation in amphiphile structure led us to propose that a non‐hydrocarbon moiety such as an amide, ether, or a hydroxy group present in the lipophilic regions can manifest distinctive effects in the context of membrane protein manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号