首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enoldiazoimides, a new subclass of enoldiazo compounds, generate enol‐substituted carbonyl ylides whose reactions with sulfur ylides enable an unprecedented formal [4+2] cycloaddition. The resulting multifunctionalized indolizidinones, which incorporate sulfur, are formed in good yields under mild reaction conditions. The uniqueness of this transformation stems from the role of the silyl‐protected enol, since the corresponding acetyldiazoimide failed to provide any cross‐products in metal‐catalyzed reactions with sulfur ylides. This copper‐catalyzed cycloaddition is initiated with the generation of enol‐substituted carbonyl ylides and sulfur ylides from enoldiazoimides and sulfonium salts, respectively, and proceeds through stepwise six‐membered ring formation, C?O and C?S bond cleavage, and silyl and acetyl group migration.  相似文献   

2.
We herein report the unprecedented synthesis of diverse biologically important aza‐heterocycles by employing sulfilimines as nitrene transfer reagents. This class of sulfur‐based aza‐ylides had not been successfully used for gold nitrene transfer before. This work contains an efficient generation of α‐imino gold carbenes by N?S cleavage of sulfilimines. These gold carbenes undergo C?H insertion, cyclopropanation, and nucleophilic attack to form indoles (44 examples), 3‐azabicyclo[3.1.0]hexan‐2‐imines (24 examples), and imidazoles (3 examples). Our study represents a unique gold‐catalyzed reaction between alkynes and sulfur ylides, and also includes the first aza‐heterocycle synthesis that proceeds by intermolecular nitrene transfer followed by cyclopropanation of the α‐imino gold carbenes. Moreover, an unexpected synthesis of 4‐acylquinolines (3 examples) from 2‐acylphenyl sulfilimines and propargylic silyl ether derivatives by a 1,2‐hydride shift onto the α‐imino gold carbene and a subsequent Mukaiyama aldol cyclization was discovered.  相似文献   

3.
A hydrogen‐bond‐mediated asymmetric [4+1] annulation/rearrangement cascade of stable sulfur ylides and nitroolefins was developed. This reaction provides a facile route to enantioenriched 4,5‐substituted oxazolidinones in moderate to excellent isolated yields (65–96 %) with excellent stereocontrol (up to more than 95:5 d.r. and 97:3 e.r.). This methodology was successfully applied to the concise synthesis of two bioactive molecules. The stereocontrolled modes and mechanism have been proposed to explain the origin of this stereochemistry.  相似文献   

4.
A visible‐light‐driven radical‐mediated strategy for the in situ generation of aza‐ortho ‐quinone methides from 2‐vinyl‐substituted anilines and alkyl radical precursors is described. This process enables an efficient multicomponent reaction of 2‐vinylanilines, halides, and sulfur ylides, and has a wide substrate scope and good functional group tolerance. Treatment of the cycloaddition products with a base leads to densely functionalized indoles in a single‐flask operation.  相似文献   

5.
Stereoselective catalytic synthesis of 3-trifluoromethyl indolines through the [4+1] cycloaddition of benzoxazinones and sulfur ylides in a transition-metal-free manner was developed. In the presence of a catalytic amount of sodium hydride, aza-ortho-quinone methide intermediates were formed from trifluoromethyl benzoxazinones through decarboxylation after the first nucleophilic attack of sulfur ylides, which progressed to a second nucleophilic attack of sulfur ylides, resulting in the [4+1] cycloaddition. The key for this catalytic transformation is the dual attack of sulfur ylides on substrates. This unique transition-metal-free protocol is applicable to the synthesis of non-fluorinated vinyl-, ethynyl- or methyl-substituted indolines. The synthesis of 3-trifluoromethyl indoles was also achieved described under stoichiometric conditions.  相似文献   

6.
A highly enantioselective synthesis of functionalized cyclopentanoids by a formal asymmetric (4+1) annulation strategy was developed. The methodology consists of a stereoselective cyclopropanation reaction between chiral sulfur ylides and 1,3‐dienes followed by a, in situ, stereospecific MgI2‐catalyzed rearrangement of vinylcyclopropanes. This method is distinguished by a remarkable compatibility with functional groups and a high stereocontrol.  相似文献   

7.
Mild and efficient synthesis of new synthetically useful aryliodonium ylides of 2,6‐dimethyl‐ pyrimidin‐4‐ol ( 3a–d ) using (dichloroiodo)arenes in aqueous medium is reported. Antibacterial activity of these ylides 3a–d against Escherichia coli and Bacillus Licheniformis is also described. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:339–342, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20608  相似文献   

8.
A direct ortho‐Csp2‐H acylmethylation of 2‐aryl‐2,3‐dihydrophthalazine‐1,4‐diones with α‐carbonyl sulfoxonium ylides is achieved through a RuII‐catalyzed C?H bond activation process. The protocol featured high functional group tolerance on the two substrates, including aryl‐, heteroaryl‐, and alkyl‐substituted α‐carbonyl sulfoxonium ylides. Thereafter, 2‐(ortho‐acylmethylaryl)‐2,3‐dihydrophthalazine‐1,4‐diones were used as potential starting materials for the expeditious synthesis of 6‐arylphthalazino[2,3‐a]cinnoline‐8,13‐diones and 5‐acyl‐5,6‐dihydrophthalazino[2,3‐a]cinnoline‐8,13‐diones under Lawesson's reagent and BF3?OEt2 mediated conditions, respectively. Of these, the BF3?OEt2‐mediated cyclization proceeded in DMSO as a solvent and a methylene source via dual C?C and C?N bond formations.  相似文献   

9.
An effective and practical method has been developed for the diversity‐oriented synthesis of 1‐alkyl‐3‐aroylindolizines via the 1,3‐dipolar cycloaddition of pyridinium ylides and aliphatic aldehydes in the presence of molecular iodine and a catalytic amount of MnO2. The synthesis proceeds by tandem reactions involving [3+2] cycloaddition, dehydration of the cycloadduct, and dehydroaromatization. Molecular iodine served both as a catalyst and a dehydroaromatization reagent in the reaction.  相似文献   

10.
A short overview on the structural design of the Hoveyda–Grubbs‐type ruthenium initiators chelated through oxygen, nitrogen or sulfur atoms is presented. Our aim was to compare and contrast O‐, N‐ and S‐chelated ruthenium complexes to better understand the impact of electron‐withdrawing and ‐donating substituents on the geometry and activity of the ruthenium complexes and to gain further insight into the transcis isomerisation process of the S‐chelated complexes. To evaluate the different effects of chelating heteroatoms and to probe electronic effects on sulfur‐ and nitrogen‐chelated latent catalysts, we synthesised a series of novel complexes. These catalysts were compared against two well‐known oxygen‐chelated initiators and a sulfoxide‐chelated complex. The structures of the new complexes have been determined by single‐crystal X‐ray diffraction and analysed to search for correlations between the structural features and activity. The replacement of the oxygen‐chelating atom by a sulfur or nitrogen atom resulted in catalysts that were inert at room temperature for typical ring‐closing metathesis (RCM) and cross‐metathesis reactions and showed catalytic activity only at higher temperatures. Furthermore, one nitrogen‐chelated initiator demonstrated thermo‐switchable behaviour in RCM reactions, similar to its sulfur‐chelated counterparts.  相似文献   

11.
The first example of iron‐catalyzed decarboxylative (4+1) cycloaddition reactions is described in this publication. By using this method, a wide range of functionalized indoline products were prepared from easily available vinyl benzoxazinanones and sulfur ylides in high yields and selectivities. A possible reaction pathway involving an allylic iron intermediate is discussed based on a series of control experiments and density‐functional theory calculations.  相似文献   

12.
An efficient one‐pot, three‐component synthesis of novel dispiro[oxindole‐3,3′‐pyrrolidines] by 1,3‐dipolar cycloaddition of azomethine ylides, in situ generated by reaction of 1,2‐diones with sarcosine and subsequent decarboxylation, with a series of (E)‐3‐benzylidene‐2,3‐dihydro‐1H‐indol‐2‐ones is reported. Molecular complexity is generated in only one synthetic step. All reactions proceed with excellent regioselectivity and in good‐to‐excellent yields. The workup is easy, the reaction times are short, and no catalyst is required.  相似文献   

13.
A direct and convenient method has been developed for the synthesis of optically active pyrrolidines bearing a quaternary stereogenic center containing a CF3 group at the C‐3 position of the pyrrolidine ring. The synthesis system, CuI/Si‐FOXAP‐catalyzed exo‐selective 1,3‐dipolar cycloaddition of azomethine ylides with β‐CF3‐β,β‐disubstituted nitroalkenes, provides pyrrolidines with high diastereoselectivities (up to >98:2 d.r.) and excellent enantioselectivities (up to >99.9 ee) and performs well for a broad scope of substrates under mild conditions.  相似文献   

14.
The functionalization of carbon–hydrogen bonds in non‐nucleophilic substrates using α‐carbonyl sulfoxonium ylides has not been so far investigated, despite the potential safety advantages that such reagents would provide over either diazo compounds or their in situ precursors. Described herein are the cross‐coupling reactions of sulfoxonium ylides with C(sp2)−H bonds of arenes and heteroarenes in the presence of a rhodium catalyst. The reaction proceeds by a succession of C−H activation, migratory insertion of the ylide into the carbon–metal bond, and protodemetalation, the last step being turnover‐limiting. The method is applied to the synthesis of benz[c]acridines when allied to an iridium‐catalyzed dehydrative cyclization.  相似文献   

15.
For the first time in the cycloimminium ylide series, we present a theoretical and experimental study concerning the correlation between structure, stability, reactivity, and biological activity of 4‐(R)‐pyrimidinium (4‐halobenzoyl)methylides (R = Me and 4‐chlorophenyl; hal = X = F, Cl, Br, I; see 5 and 6 in Scheme 1). The 4‐methylpyrimidinium (4‐halobenzoyl)methylides 5 are relatively stable compounds, while the (4‐chlorophenyl)pyrimidinium (4‐halobenzoyl)methylides 6 are more unstable. Their stability varies with the nature of the substituents at the ylide carbanion and pyrimidinium cation moieties as confirmed by quantum‐chemical calculations. The latter also disclose the possibility to use pyrimidinium ylides as nucleophilic reagents as well as 1,3‐dipoles in reactions with appropriate reagents. The experimental data obtained confirm the calculations concerning the nucleophilicity and reactivity of the ylides 5 and 6 . Moreover, the influence of microwave irradiation on the synthesis of the pyrimidinium salts 3 and 4 from pyrimidine and an organic halide is studied and reveals a remarkable reaction‐rate increase under microwave irradiation as compared to classical conditions; this allows the general and facile synthesis of the salts 3 and 4 (Scheme 1, Table 1). The in vitro biological activity of the newly obtained 4‐methylpyrimidine compounds is also tested. Some of them exhibit a remarkable activity against different microorganisms (germs and fungi) which allows to establish structure–activity correlations.  相似文献   

16.
The reaction of 2‐thioxo‐4‐thiazolidinone ( 1a ) with phosphorus ylides 2a and 2b afforded compounds 5 and 6. On the other hand, formylmethylenetriphenylphosphorane (2c) reacts with 1a and its N‐methyl derivative 1b to give the new complicated phosphonium ylides 7a,b, respectively. Reactions of 1b with ylides 2a and 2d gave rise to the olefinic compound 8 and the new phosphorane product 9. Moreover, dialkyl phosphites 3a,b and trialkyl phosphites 4a–c react with 1a to give both the alkylated products 10a–c and the dimeric compounds 11,12. A mechanism is proposed to explain the formation of the new products.© 1999 John Wiley & Sons, Inc. Heteroatom Chem 10: 337–341, 1999  相似文献   

17.
The all‐cis stereoisomers of tetrasubstituted azetidine‐2‐carboxylic acids and derivatives that possess three chiral centers have been prepared in high yield and stereocontrol from silyl‐protected Z‐γ‐substituted enoldiazoacetates and imido‐sulfur ylides by asymmetric [3+1]‐cycloaddition using chiral sabox copper(I) catalysis followed by Pd/C catalytic hydrogenation. Hydrogenation of the chiral p‐methoxybenzyl azetine‐2‐carboxylates occurs with both hydrogen addition to the C=C bond and hydrogenolysis of the ester.  相似文献   

18.
The first investigation on catalytic asymmetric [2,3]-sigmatropic rearrangement of sulfur ylides generated from carbenoids and allenic phenyl sulfide was carried out. Up to 55% ee value was obtained.  相似文献   

19.
A facile and highly chemoselective synthesis of doubly activated cyclopropanes is reported where mixtures of alkenes and β‐dicarbonyl‐derived iodonium ylides are irradiated with light from blue LEDs. This metal‐free synthesis gives cyclopropanes in yields up to 96 %, is operative with cyclic and acyclic ylides, and proceeds with a variety of electronically‐diverse alkenes. Computational analysis explains the high selectivity observed, which derives from exclusive HOMO to LUMO excitation, instead of free carbene generation. The procedure is operationally simple, uses no photocatalyst, and provides access in one step to important building blocks for complex molecule synthesis.  相似文献   

20.
A convenient one‐pot four‐component synthesis of tetrasubstituted pyrroles was carried out through the reaction of butane‐2,3‐dione with α‐aminophosphorous ylides, obtained in situ from the 1 : 1 : 1 addition reaction between triphenylphosphine, dialkyl acetylenedicarboxylate, and ammonium acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号