首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to previous reports, metal cations or water molecules are necessary for the stabilization of pentazolate anion (cyclo‐N5?) at ambient temperature and pressure. Seeking a new method to stabilize N5? is a big challenge. In this work, three anhydrous, metal‐free energetic salts based on cyclo‐N5? 3,9‐diamino‐6,7‐dihydro‐5 H‐bis([1,2,4]triazolo)[4,3‐e:3′,4′‐g][1,2,4,5] tetrazepine‐2,10‐diium, N‐carbamoylguanidinium, and oxalohydrazinium (oxahy+) pentazolate were synthesized and isolated. All salts were characterized by elemental analysis, IR spectroscopy, 1H, 13C, and (in some cases) 15N NMR spectroscopy, thermal analysis (TGA and DSC), and single‐crystal XRD analysis. Computational studies associated with heats of formation and detonation performance were performed by using Gaussian 09 and Explo5 programs, respectively. The sensitivity of the salts towards impact and friction was determined, and overall the real N5 explosives showed promising energetic properties.  相似文献   

2.
3.
4.
The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N‐2,6‐iPr2C6H3)2}2(thf)2], 2 , which possesses a quadruply bonded Mo2II core, undergoes light‐induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the MoI2 complexes [Mo2{HC(N‐2,6‐iPr2C6H3)2}2(arene)], 3?C6H6 and 3?C6H5Me , respectively. The analogous C6H5OMe, p‐C6H4Me2, C6H5F, and p‐C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X‐ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the MoI2 core, coordinating to each in an η2 fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2‐arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron‐rich C?C bonds.  相似文献   

5.
The theoretical background of the formation of N‐heterocyclic oxadiazoline carbenes through a metal‐assisted [2+3]‐dipolar cycloaddition (CA) reaction of nitrones R1CH?N(R2)O to isocyanides C?NR and the decomposition of these carbenes to imines R1CH?NR2 and isocyanates O?C?NR is discussed. Furthermore, the reaction mechanisms and factors that govern these processes are analyzed in detail. In the absence of a metal, oxadiazoline carbenes should not be accessible due to the high activation energy of their formation and their low thermodynamic stability. The most efficient promotors that could assist the synthesis of these species should be “carbenophilic” metals that form a strong bond with the oxadiazoline heterocycle, but without significant involvement of π‐back donation, namely, AuI, AuIII, PtII, PtIV, ReV, and PdII metal centers. These metals, on the one hand, significantly facilitate the coupling of nitrones with isocyanides and, on the other hand, stabilize the derived carbene heterocycles toward decomposition. The energy of the LUMOCNR and the charge on the N atom of the C?N group are principal factors that control the cycloaddition of nitrones to isocyanides. The alkyl‐substituted nitrones and isocyanides are predicted to be more active in the CA reaction than the aryl‐substituted species, and the N,N,C‐alkyloxadiazolines are more stable toward decomposition relative to the aryl derivatives.  相似文献   

6.
The electronic properties of 3d transition metal (TM)‐decorated silicene were investigated by using density functional calculations in an attempt to replace graphene in electronic applications, owing to its better compatibility with Si‐based technology. Among the ten types of TM‐doped silicene (TM–silicene) studied, Ti‐, Ni‐, and Zn‐doped silicene became semiconductors, whereas Co and Cu doping changed the substrate to a half‐metallic material. Interestingly, in cases of Ti‐ and Cu‐doped silicene, the measured band gaps turned out to be significantly larger than the previously reported band gap in silicene. The observed band‐gap openings at the Fermi level were induced by breaking the sublattice symmetry caused by two structural changes, that is, the Jahn–Teller distortion and protrusion of the TM atom. The present calculation of the band gap in TM–silicene suggests useful guidance for future experiments to fabricate various silicene‐based applications such as a field‐effect transistor, single‐spin electron source, and nonvolatile magnetic random‐access memory.  相似文献   

7.
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal.  相似文献   

8.
Molecular recognition events in biological systems are driven by non‐covalent interactions between interacting species. Here, we have studied hydrogen bonds of the CH???Y type involving electron‐deficient CH donors using dispersion‐corrected density functional theory (DFT) calculations applied to acetylcholinesterase–ligand complexes. The strengths of CH???Y interactions activated by a proximal cation were considerably strong; comparable to or greater than those of classical hydrogen bonds. Significant differences in the energetic components compared to classical hydrogen bonds and non‐activated CH???Y interactions were observed. Comparison between DFT and molecular mechanics calculations showed that common force fields could not reproduce the interaction energy values of the studied hydrogen bonds. The presented results highlight the importance of considering CH???Y interactions when analysing protein–ligand complexes, call for a review of current force fields, and opens up possibilities for the development of improved design tools for drug discovery.  相似文献   

9.
A new 2,5‐di‐tert‐butyl‐6‐oxophenalenoxyl (6OPO) derivative with a cyano group at the 8‐position, where a large spin density resides, has been synthesized. This neutral radical exhibits high stability in the solid state in air despite the low steric protection on the 8‐position; the stability is comparable to that of a corresponding 8‐tert‐butylated 6OPO derivative. EPR/1H‐ENDOR/TRIPLE (electron paramagnetic resonance/1H‐electron‐nuclear double resonance/TRIPLE) spectroscopy and cyclic voltammetry showed an extended spin delocalization on the cyano group and a significant increase in electron‐accepting ability relative to that of the 8‐tert‐butylated 6OPO derivative. DFT calculations indicated the extension of a singly occupied molecular orbital (SOMO) onto the cyano group and the lower‐lying SOMO and LUMO in comparison with those of the 8‐tert‐butylated 6OPO derivative, which was consistent with experimental results. Furthermore, the extended nature of π conjugation onto the cyano group was quantitatively evaluated by calculating the contributing weights of resonance structures in terms of a molecular orbital (MO)‐based valence‐bond (VB) method. Herein, the synthesis and physical properties of the 8‐cyano‐6OPO derivative are described, emphasizing that the high stability arises from the electronic effect of the cyano group. Also, the usefulness of the quantitative resonance structure analysis is shown.  相似文献   

10.
The photoluminescence (PL) properties of a metal‐free organoboron complex, bis(4‐iodobenzoyl)methanatoboron difluoride ( 1BF2 ), were elucidated. At room temperature, 1BF2 emits blue fluorescence (FL) in nBuCl upon photoexcitation. In contrast, crystals of 1BF2 emit green PL comprised of FL and phosphorescence (PH). The room‐temperature PH of crystalline 1BF2 is a consequence of 1) suppression of thermal deactivation of the S1 and T1 excited states and 2) enhancement of intersystem crossing (ISC) from the S1 to T2 or T1. The results of X‐ray crystallographic and theoretical studies supported the proposal that the former (1) is a result of intermolecular interactions caused by π‐stacking in the rigid crystal packing structure of 1BF2 . The latter (2) is an effect of not only the heavy‐atom effect of iodine, but also the continuous π‐stacking alignment of 1BF2 molecules in crystals, which leads to a forbidden S1→S0 transition and a small energy gap between the S1 and T2 or T1.  相似文献   

11.
A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2] (Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl) with LiBH4 ? thf at ?78 °C, followed by room‐temperature reaction with three equivalents of [Mn2(CO)10] yielded a manganese hexahydridodiborate compound [{(OC)4Mn}(η6‐B2H6){Mn(CO)3}2(μ‐H)] ( 1 ) and a triply bridged borylene complex [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2MnH(CO)3] ( 2 ). In a similar fashion, [Re2(CO)10] generated [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2ReH(CO)3] ( 3 ) and [(μ3‐BH)(Cp*Co)2(μ‐CO)2(μ‐H)Co(CO)3] ( 4 ) in modest yields. In contrast, [Ru3(CO)12] under similar reaction conditions yielded a heterometallic semi‐interstitial boride cluster [(Cp*Co)(μ‐H)3Ru3(CO)9B] ( 5 ). The solid‐state X‐ray structure of compound 1 shows a significantly shorter boron–boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using 1H, 11B, 13C NMR spectroscopy, mass spectrometry, and X‐ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B?H?Mn, a weak B?B?Mn interaction, and an enhanced B?B bonding in 1 .  相似文献   

12.
The mechanism of the nitrene‐group transfer reaction from an organic azide to isonitrile catalyzed by a ZrIV d0 complex carrying a redox‐active ligand was studied by using quantum chemical molecular‐modeling methods. The key step of the reaction involves the two‐electron reduction of the azide moiety to release dinitrogen and provide the nitrene fragment, which is subsequently transferred to the isonitrile substrate. The reducing equivalents are supplied by the redox‐active bis(2‐iso‐propylamido‐4‐methoxyphenyl)‐amide ligand. The main focus of this work is on the mechanism of this redox reaction, in particular, two plausible mechanistic scenarios are considered: 1) the metal center may actively participate in the electron‐transfer process by first recruiting the electrons from the redox‐active ligand and becoming formally reduced in the process, followed by a classical metal‐based reduction of the azide reactant. 2) Alternatively, a non‐classical, direct ligand‐to‐ligand charge‐transfer process can be envisioned, in which no appreciable amount of electron density is accumulated at the metal center during the course of the reaction. Our calculations indicate that the non‐classical ligand‐to‐ligand charge‐transfer mechanism is much more favorable energetically. Utilizing a series of carefully constructed putative intermediates, both mechanistic scenarios were compared and contrasted to rationalize the preference for ligand‐to‐ligand charge‐transfer mechanism.  相似文献   

13.
Mononuclear nonheme MnIV?O complexes with two isomers of a bispidine ligand have been synthesized and characterized by various spectroscopies and density functional theory (DFT). The MnIV?O complexes show reactivity in oxidation reactions (hydrogen‐atom abstraction and sulfoxidation). Interestingly, one of the isomers (L1) is significantly more reactive than the other (L2), while in the corresponding FeIV?O based oxidation reactions the L2‐based system was previously found to be more reactive than the L1‐based catalyst. This inversion of reactivities is discussed on the basis of DFT and molecular mechanics (MM) model calculations, which indicate that the order of reactivities are primarily due to a switch of reaction channels (σ versus π) and concomitant steric effects.  相似文献   

14.
The first non‐pincer‐type mononuclear scandium alkylidene complexes were synthesized and structurally characterized. These complexes exhibited short Sc?C bond lengths and even one of the shortest reported to date (2.1134(18) Å). The multiple character of the Sc?C bond was highlighted by a DFT calculation. This was confirmed by experimental reactivity study where the complex underwent [2+1] cycloaddition with elemental selenium and [2+2] cycloaddition with imine. DFT calculation also revealed a strong nucleophilic behavior of the alkylidene complex that was experimentally demonstrated by the C?H bond activation of phenylacetylene.  相似文献   

15.
16.
Insight into how H2O is oxidized to O2 is envisioned to facilitate the rational design of artificial water oxidation catalysts, which is a vital component in solar‐to‐fuel conversion schemes. Herein, we report on the mechanistic features associated with a dinuclear Ru‐based water oxidation catalyst. The catalytic action of the designed Ru complex was studied by the combined use of high‐resolution mass spectrometry, electrochemistry, and quantum chemical calculations. Based on the obtained results, it is suggested that the designed ligand scaffold in Ru complex 1 has a non‐innocent behavior, in which metal–ligand cooperation is an important part during the four‐electron oxidation of H2O. This feature is vital for the observed catalytic efficiency and highlights that the preparation of catalysts housing non‐innocent molecular frameworks could be a general strategy for accessing efficient catalysts for activation of H2O.  相似文献   

17.
Covalency is found to even out charge separation after photo‐oxidation of the metal center in the metal‐to‐ligand charge‐transfer state of an iron photosensitizer. The σ‐donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble‐gas configuration. These findings are enabled through element‐specific and orbital‐selective time‐resolved X‐ray absorption spectroscopy at the iron L‐edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge‐separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron‐transfer process.  相似文献   

18.
Aromaticity is one of the most important concepts in organic chemistry. A variety of metalla‐aromatic compounds have been recently prepared and in most of those examples, the metal participates only in a monocyclic ring. In contrast, metal‐bridged bicyclic aromatic molecules, in which a metal is shared between two aromatic rings, have been less developed. Herein, we report the first metal‐bridged tricyclic aromatic system, in which the metal center is shared by three aromatic five‐membered rings. These metalla‐aromatics are formed by reaction between osmapentalyne and arene nucleophiles. Experimental results and theoretical calculations reveal that the three five‐membered rings around the osmium center are aromatic. In addition, the broad absorption bands in the UV/Vis absorption spectra of these novel aromatic systems cover almost the entire visible region. This straightforward synthetic strategy may be extended to the synthesis of other metal‐bridged polycyclic aromatics.  相似文献   

19.
The electronic structure and magnetic properties of neptunyl(VI), NpO22+, and two neptunyl complexes, [NpO2(NO3)3]? and [NpO2Cl4]2?, were studied with a combination of theoretical methods: ab initio relativistic wavefunction methods and density functional theory (DFT), as well as crystal‐field (CF) models with parameters extracted from the ab initio calculations. Natural orbitals for electron density and spin magnetization from wavefunctions including spin–orbit coupling were employed to analyze the connection between the electronic structure and magnetic properties, and to link the results from CF models to the ab initio data. Free complex ions and systems embedded in a crystal environment were studied. Of prime interest were the electron paramagnetic resonance g‐factors and their relation to the complex geometry, ligand coordination, and nature of the nonbonding 5f orbitals. The g‐factors were calculated for the ground and excited states. For [NpO2Cl4]2?, a strong influence of the environment of the complex on its magnetic behavior was demonstrated. Kohn–Sham DFT with standard functionals can produce reasonable g‐factors as long as the calculation converges to a solution resembling the electronic state of interest. However, this is not always straightforward.  相似文献   

20.
High‐density energetic salts that contain nitrogen‐rich cations and the 5‐(tetrazol‐5‐ylamino)tetrazolate (HBTA?) or the 5‐(tetrazol‐5‐yl)tetrazolate (HBT?) anion were readily synthesized by the metathesis reactions of sulfate salts with barium compounds, such as bis[5‐(tetrazol‐5‐ylamino)tetrazolate] (Ba(HBTA)2), barium iminobis(5‐tetrazolate) (BaBTA), or barium 5,5′‐bis(tetrazolate) (BaBT) in aqueous solution. All salts were fully characterized by IR spectroscopy, multinuclear (1H, 13C, 15N) NMR spectroscopy, elemental analyses, density, differential scanning calorimetry (DSC), and impact sensitivity. Ba(HBTA)2 ? 4 H2O crystallizes in the triclinic space group P$\bar 1$ , as determined by single‐crystal X‐ray diffraction, with a density of 2.177 g cm?3. The densities of the other organic energetic salts range between 1.55 and 1.75 g cm?3 as measured by a gas pycnometer. The detonation pressure (P) values calculated for these salts range from 19.4 to 33.6 GPa, and the detonation velocities (νD) range from 7677 to 9487 m s?1, which make them competitive energetic materials. Solid‐state 13C NMR spectroscopy was used as an effective technique to determine the structure of the products that were obtained from the metathesis reactions of biguanidinium sulfate with barium iminobis(5‐tetrazolate) (BaBTA). Thus, the structure was determined as an HBTA salt by the comparison of its solid‐state 13C NMR spectroscopy with those of ammonium 5‐(tetrazol‐5‐ylamino)tetrazolate (AHBTA) and diammonium iminobis(5‐tetrazolate) (A2BTA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号