首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porphyrin ligands, showing a significant affinity for cancer cells, also have the ability to chelate metallic radioisotopes to form potential diagnostic radiopharmaceuticals. They can be applied in single-photon emission computed tomography (SPECT) and positron emission tomography (PET) to evaluate metabolic changes in the human body for tumor diagnostics. The aim of this paper is to present a short overview of the main metallic radionuclides complexed by porphyrin ligands and used in these techniques. These chelation reactions are discussed in terms of the complexation conditions and kinetics and the complex stability.  相似文献   

2.
3.
4.
A lack of efficient diagnostic tools for early and noninvasive diagnosis of breast cancer has restricted the clinical treatment effect. This problem might be addressed by the combination of aggregation-induced emission (AIE) fluorescence imaging and positron emission tomography (PET) with the dual advantages of high resolution and easy operation, and unlimited penetration and high sensitivity. Here, a mitochondria-targeted AIE luminogen (AIEgen) radiolabeled with 18F was developed through a two-step radiochemical reaction by virtue of a prosthetic group. The obtained 18/19F-Bz-CP imaging probe was examined by in vitro cell uptake and cell proliferation inhibition in two breast cancer cell lines, showing that the probe can efficiently target and locate in the mitochondria through the analysis of fluorescence imaging and PET simultaneously. Additionally, the probe can induce cancer cell apoptosis with the half maximal inhibitory concentration (IC50) of 4.8 μM for MCF-7 cells and 7.2 μM for T47D cells, indicating its potential application for breast cancer therapy.  相似文献   

5.
6.
7.
8.
We describe multimodal imaging probes for gastrin-releasing peptide receptor (GRPR)-specific targeting suited for positron emission tomography and optical imaging (PET/OI), consisting of PESIN (PEG3-BBN7-14) dimers connected to multimodal imaging subunits. These multimodal agents comprise a fluorescent dye for OI and the chelator ((1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) (NODA-GA) for PET radiometal isotope labelling. Special focus was put on the influence of the used dyes on the properties of the whole bioconjugates. For this, several compounds with different fluorescent dyes and non-dye carrying subunits were synthesized and investigated. As fluorescent dyes, dansyl, NBD, derivatives of fluorescein, coumarin and rhodamine as well as three pyrilium-based dyes were employed. Considerable influence of the charge of the colored unit on hydrophilicity as well as in vitro target receptor binding was observed and classified. High radiochemical yields and purities were found during radiolabeling of the multimodal imaging subunits as well as their GRPR-specific bioconjugates with 68Ga. Examinations of the photophysical properties of both molecule species displayed no loss or alteration of fluorescence characteristics.  相似文献   

9.
10.
In molecular imaging, multimodal imaging agents can provide complementary information, for improving the accuracy of disease diagnosis or enhancing patient management. In particular, optical/nuclear imaging may find important preclinical and clinical applications. To simplify the preparation of dual‐labeled imaging agents, we prepared versatile monomolecular multimodal imaging probe (MOMIP) platforms containing both a fluorescent dye (BODIPY) and a metal chelator (polyazamacrocycle). One of the MOMIP was conjugated to a cyclopeptide (i.e., octreotide) and radiolabeled with 111In. In vitro and in vivo studies of the resulting bioconjugate were conducted, highlighting the potential of these BODIPY‐based bimodal probes. This work also confirmed that the biovector and/or the bimodal probes must be chosen carefully, due to the impact of the MOMIP on the overall properties of the resulting imaging agent.  相似文献   

11.
Gadolinium‐based contrast agents (GBCAs) are used to provide diagnostic information in clinical magnetic resonance (MR) examinations. Gadolinium (Gd) has been detected in the brain, bone and skin of patients, months and years following GBCA administration, raising concerns about long term toxicity. Despite increased scrutiny, the concentration, chemical form and fate of the retained gadolinium species remain unknown. Importantly, the whole body biodistribution and organ clearance of GBCAs is poorly understood in humans. Gadolinium lacks suitable isotopes for nuclear imaging. We demonstrate that the yttrium‐86 isotope can be used as a gadolinium surrogate. We show that Gd and their analogous Y complexes have similar properties both in solution and in vivo, and that yttrium‐86 PET can be used to track the biodistribution of GBCAs over a two‐day period.  相似文献   

12.
Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate‐specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR‐based molecular imaging. We have synthesized three new high‐affinity, low‐molecular‐weight GdIII‐based PSMA‐targeted contrast agents containing one to three GdIII chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA‐based MR molecular imaging.  相似文献   

13.
A practical, convergent synthesis of prostate-specific membrane antigen (PSMA) targeted imaging agents for MRI, PET, and SPECT of prostate cancer has been developed. In this approach, metals chelated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were placed on the side chains of lysine early in the synthesis to form imaging modules. These are coupled to targeting modules, in this case consisting of the PSMA-binding urea DCL, bonded to an activated linker. The modular approach to targeted molecular imaging agents (TMIAs) offers distinct advantages. By chelating the MRI contrast metal Gd early, it doubles as a protecting group for DOTA. Standard coupling and deprotection steps may be utilized to assemble the modules into peptides, and the need for tri-tert-butyl protection of DOTA requiring removal by strong acid is averted. This enables mild conjugation of the imaging module to a wide variety of targeting agents in the final step. It was further discovered that two labile metals, La3+ or Ce3+, can be used as placeholders in DOTA during the synthesis, then transmetalated in mild acid by Cu2+, Ga3+, In3+, and Y3+, metals used in PET/SPECT. This enables the efficient synthesis of nonradioactive analogues of targeted molecular imaging agents that may be transported or stored until needed. A simple and mild two-step transmetalation, involving de-metalation in dilute acid, followed by rapid chelation of the radioactive metal, may be conveniently performed later at the clinic to provide the TMIAs for PET or SPECT.  相似文献   

14.
Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.  相似文献   

15.
The development of magnetic nanoparticles (MNPs) with functional groups has been intensively pursued in recent years. Herein, a simple, versatile, and cost‐effective strategy to synthesize water‐soluble and amino‐functionalized MNPs, based on the thermal decomposition of phthalimide‐protected metal–organic precursors followed by deprotection, was developed. The resulting amino‐functionalized Fe3O4, MnFe2O4, and Mn3O4 MNPs with particle sizes of about 14.3, 7.5, and 6.6 nm, respectively, had narrow size distributions and good dispersibility in water. These MNPs also exhibited high magnetism and relaxivities of r2=107.25 mM?1 s?1 for Fe3O4, r2=245.75 mM?1 s?1 for MnFe2O4, and r1=2.74 mM?1 s?1 for Mn3O4. The amino‐functionalized MNPs were further conjugated with a fluorescent dye (rhodamine B) and a targeting ligand (folic acid: FA) and used as multifunctional probes. Magnetic resonance imaging and flow‐cytometric studies showed that these probes could specifically target cancer cells overexpressing FA receptors. This new protocol opens a new way for the synthesis and design of water‐soluble and amino‐functionalized MNPs by an easy and versatile route.  相似文献   

16.
17.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have attracted considerable attention for their application in biomedicine. Here, silica‐coated NaGdF4:Yb,Er/NaGdF4 nanoparticles with a tetrasubstituted carboxy aluminum phthalocyanine (AlC4Pc) photosensitizer covalently incorporated inside the silica shells were prepared and applied in the photodynamic therapy (PDT) and magnetic resonance imaging (MRI) of cancer cells. These UCNP@SiO2(AlC4Pc) nanoparticles were uniform in size, stable against photosensitizer leaching, and highly efficient in photogenerating cytotoxic singlet oxygen under near‐infrared (NIR) light. In vitro studies indicated that these nanoparticles could effectively kill cancer cells upon NIR irradiation. Moreover, the nanoparticles also demonstrated good MR contrast, both in aqueous solution and inside cells. This is the first time that NaGdF4:Yb,Er/NaGdF4 upconversion‐nanocrystal‐based multifunctional nanomaterials have been synthesized and applied in PDT. Our results show that these multifunctional nanoparticles are very promising for applications in versatile imaging diagnosis and as a therapy tool in biomedical engineering.  相似文献   

18.
本文探讨了计算机断层扫描(CT)、磁共振成像(MRI)对良恶性甲状腺结节的鉴别价值。方法:选取2015年3月至2018年3月本院收治的甲状腺结节患者150例,依据病理结果分为恶性48例、良性102例,所有患者均给予CT、MRI检查,分析CT、MRI对良恶性甲状腺结节的鉴别价值。结果发现,MRI总病灶、形态不规则、边界不清/毛糙、信号/密度不均检出率明显高于CT,MRI钙化灶检出率明显低于CT,差异有统计学意义(P<0.05),CT、MRI淋巴结转移检出率比较,差异无统计学意义(P>0.05);在鉴别良恶性甲状腺结节的敏感度、特异度、准确度中,CT为79.17%、74.51%、76.00%,MRI为83.33%、80.39%、81.33%,CT联合MRI为95.83%、96.08%、96.00%,CT联合MRI明显高于CT、MRI,差异有统计学意义(P<0.05)。说明CT、MRI可作为鉴别良恶性甲状腺结节的重要方法,CT对钙化灶有较高的分辨能力,MRI对软组织及小病灶有较高的分辨能力,CT联合MRI可有效提高其鉴别价值。  相似文献   

19.
探讨数字减影血管成像(DSA)、计算机断层扫描血管成像(CTA)联合磁共振(MR)影像评估急性缺血性卒中(AIS)患者脑支循环及预后性关系。选取60例大脑中动脉M1段急性闭塞所致AIS患者为研究对象,根据DSA、CTA与MR影像对其脑侧支循环评估,比较患者基线资料、结局指标等,并分析预后性。结果发现:基于DSA、CTA与MR影像对AIS患者脑侧支循环评估结果一致性良好;3种影像模式下脑侧支循环良好组与不良组结局资料差异显著(P<0.05);多因素分析显示,FVH-ASPECTS评分、rLMC评分、ASITN/SIR分级量表均为AIS患者神经功能预后的独立影响因素。总之,DSA、CTA、MR影像对AIS患者脑侧支循环评估具有一致性,且FVH-ASPECTS评分、rLMC评分、ASITN/SIR分级量表均为AIS患者神经功能预后的独立影响因素。  相似文献   

20.
Metallic glasses and cancer theranostics are emerging fields that do not seem to be related to each other. Herein, we report the facile synthesis of amorphous iron nanoparticles (AFeNPs) and their superior physicochemical properties compared to their crystalline counterpart, iron nanocrystals (FeNCs). The AFeNPs can be used for cancer theranostics by inducing a Fenton reaction in the tumor by taking advantage of the mild acidity and the overproduced H2O2 in a tumor microenvironment: Ionization of the AFeNPs enables on‐demand ferrous ion release in the tumor, and subsequent H2O2 disproportionation leads to efficient .OH generation. The endogenous stimuli‐responsive .OH generation in the presence AFeNPs enables a highly specific cancer therapy without the need for external energy input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号