共查询到8条相似文献,搜索用时 0 毫秒
1.
Metal–Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox‐Active Ligands 下载免费PDF全文
Daniël L. J. Broere Dieuwertje K. Modder Eva Blokker Dr. Maxime A. Siegler Dr. ir. Jarl Ivar van der Vlugt 《Angewandte Chemie (International ed. in English)》2016,55(7):2406-2410
The tuning of metal–metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox‐active PNO ligand to AuI followed by homoleptic metalation of the NO pocket with NiII affords a unique trinuclear Au–Ni–Au complex. This species features two antiferromagnetically coupled ligand‐centered radicals and a double intramolecular d8–d10 interaction, as supported by spectroscopic, single‐crystal X‐ray diffraction, and computational data. A corresponding cationic dinuclear Au–Ni analogue with a stronger d8–d10 interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au–Ni–Au complex facilitates electrocatalytic C?X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox‐active ligand framework, an available coordination site at gold, and the nature of the nickel–gold interaction appear to be essential for this reactivity. 相似文献
2.
Prof. Dr. Rudolf Knorr Dr. David S. Stephenson 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(24):7501-7505
Partial labeling by deuterium may be quantified through simple integrations of those 1H (200 or 400 MHz ) and 13C (100.6 MHz ) NMR resonances that are split into pairs by chemical shifts nΔ=δ(deuterated)?δ(nondeuterated) as induced by deuterium across n>2 chemical bonds. The relative intensities of the two components of a pair are shown to be influenced to practically equal degrees by relaxation effects, so that a deuterium fraction may be determined from 1H and 13C integral pairs at more remote molecular positions under the routine conditions of fast accumulative spectral acquisition. 相似文献
3.
Raphael M. Jay Sebastian Eckert Vinícius VazdaCruz Mattis Fondell Rolf Mitzner Alexander Fhlisch 《Angewandte Chemie (International ed. in English)》2019,58(31):10742-10746
Covalency is found to even out charge separation after photo‐oxidation of the metal center in the metal‐to‐ligand charge‐transfer state of an iron photosensitizer. The σ‐donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble‐gas configuration. These findings are enabled through element‐specific and orbital‐selective time‐resolved X‐ray absorption spectroscopy at the iron L‐edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge‐separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron–hole pair associated with the electron‐transfer process. 相似文献
4.
Matthias Kruck Prof. Dr. Hubert Wadepohl Prof. Dr. Markus Enders Prof. Dr. Lutz H. Gade 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(5):1599-1606
High‐spin FeII–alkyl complexes with bis(pyridylimino)isoindolato ligands were synthesized and their paramagnetic 1H and 13C NMR spectra were analyzed comprehensively. The experimental 13C—1H coupling values are temperature (T?1)‐ as well as magnetic‐field (B2)‐dependent and deviate considerably from typical scalar 1JCH couplings constants. This deviation is attributed to residual dipolar couplings (RDCs), which arise from partial alignment of the complexes in the presence of a strong magnetic field. The analysis of the experimental RDCs allows an unambiguous assignment of all 13C NMR resonances and, additionally, a structural refinement of the conformation of the complexes in solution. Moreover the RDCs can be used for the analysis of the alignment tensor and hence the tensor of the anisotropy of the magnetic susceptibility. 相似文献
5.
Metal‐to‐Ligand Alkyl Migration Inducing Carbon–Sulfur Bond Cleavage in Dialkyl Yttrium Complexes Supported by Thiazole‐Containing Amidopyridinate Ligands: Synthesis,Characterization, and Catalytic Activity in the Intramolecular Hydroamination Reaction 下载免费PDF全文
Dr. Dmitry M. Lyubov Dr. Lapo Luconi Dr. Andrea Rossin Dr. Giulia Tuci Anton V. Cherkasov Prof. Georgy K. Fukin Dr. Giuliano Giambastiani Prof. Alexander A. Trifonov 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(12):3487-3499
Neutral YIII dialkyl complexes supported by tridentate N?,N,N monoanionic methylthiazole– or benzothiazole–amidopyridinate ligands have been prepared and completely characterized. Studies on their stability in solution revealed progressive rearrangement of the coordination sphere in the benzothiazole‐containing system through an unprecedented metal‐to‐ligand alkyl migration and subsequent thiazole ring opening. Attempts to synthesize hydrido species from the dialkyl precursor led to the generation of a dimeric yttrium species stabilized by a trianionic N?,N,N?,S? ligand as the result of metal‐to‐ligand hydride migration with chemoselective thiazole ring opening and subsequent dimerization through intermolecular addition of the residual Y?H group to the imino fragment of a second equivalent of the ring‐opened intermediate. DFT calculations were used to elucidate the thermodynamics and kinetics of the process, in support of the experimental evidence. Finally, all isolated yttrium complexes, especially their cationic forms prepared by activation with the Lewis acid Ph3C+[B(C6F5)4]?, were found to be good candidate catalysts for intramolecular hydroamination/cyclization reactions. Their catalytic performance with a number of primary and secondary amino alkenes was assessed. 相似文献
6.
7.
Glenna So Ming Tong Dr. Yuen‐Chi Law Dr. Steven C. F. Kui Dr. Nianyong Zhu Dr. King Hong Leung Dr. David Lee Phillips Prof. Chi‐Ming Che Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2010,16(22):6540-6554
The complexes [Pt(tBu3tpy){C?C(C6H4C?C)n?1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(C?CR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(C?CR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C?C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(C?CR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){C?C(C6H4C?C)n?1Ph}]+ (n=1–3), and [Pt(H3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(C?CR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(C?CR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(C?CR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(C?CAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(C?C)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){C?C(C6H4C?C)n?1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1). 相似文献