首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New nickel‐based complexes of 1,2‐bis[(2,6‐diisopropylphenyl)imino]acenaphthene (dpp‐bian) with BF4? counterion or halide co‐ligands were synthesized in THF and MeCN. The nickel(I) complexes were obtained by using two approaches: 1) electrochemical reduction of the corresponding nickel(II) precursors; and 2) a chemical comproportionation reaction. The structural features and redox properties of these complexes were investigated by using single‐crystal X‐ray diffraction (XRD), cyclic voltammetry (CV), and electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. The influence of temperature and solvent on the structure of the nickel(I) complexes was studied in detail, and an uncommon reversible solvent‐induced monomer/dimer transformation was observed. In the case of the fluoride complex, the unpaired electron was found to be localized on the dpp‐bian ligand, whereas all of the other nickel complexes contained neutral dpp‐bian moieties.  相似文献   

2.
3.
Reversible proton‐ and electron‐transfer steps are crucial for various chemical transformations. The electron‐reservoir behavior of redox non‐innocent ligands and the proton‐reservoir behavior of chemically non‐innocent ligands can be cooperatively utilized for substrate bond activation. Although site‐decoupled proton‐ and electron‐transfer steps are often found in enzymatic systems, generating model metal complexes with these properties remains challenging. To tackle this issue, we present herein complexes [(cod?H)M(μ‐L2?) M (cod?H)] (M=PtII, [ 1 ] or PdII, [ 2 ], cod=1,5‐cyclooctadiene, H2L=2,5‐di‐[2,6‐(diisopropyl)anilino]‐1,4‐benzoquinone), in which cod acts as a proton reservoir, and L2? as an electron reservoir. Protonation of [ 2 ] leads to an unusual tetranuclear complex. However, [ 1 ] can be stepwise reversibly protonated with up to two protons on the cod?H ligands, and the protonated forms can be stepwise reversibly reduced with up to two electrons on the L2? ligand. The doubly protonated form of [ 1 ] is also shown to react with OMe? leading to an activation of the cod ligands. The site‐decoupled proton and electron reservoir sources work in tandem in a three‐way cooperative process that results in the transfer of two electrons and two protons to a substrate leading to its double reduction and protonation. These results will possibly provide new insights into developing catalysts for multiple proton‐ and electron‐transfer reactions by using metal complexes of non‐innocent ligands.  相似文献   

4.
The synthesis of bis(formazanate) zinc complexes is described. These complexes have well‐behaved redox‐chemistry, with the ligands functioning as a reversible electron reservoir. This allows the synthesis of bis(formazanate) zinc compounds in three redox states in which the formazanate ligands are reduced to “metallaverdazyl” radicals. The stability of these ligand‐based radicals is a result of the delocalization of the unpaired electron over four nitrogen atoms in the ligand backbone. The neutral, anionic, and dianionic compounds (L2Zn0/?1/?2) were fully characterized by single‐crystal X‐ray crystallography, spectroscopic methods, and DFT calculations. In these complexes, the structural features of the formazanate ligands are very similar to well‐known β‐diketiminates, but the nitrogen‐rich (NNCNN) backbone of formazanates opens the door to redox‐chemistry that is otherwise not easily accessible.  相似文献   

5.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

6.
Herein, we report on the synthesis, protonation, and coordination chemistry of chelating guanidine ligands with biphenyl, binaphthyl, and bipyridyl backbones. The ligands are shown to be proton sponges, and this protonation was studied experimentally and by using quantum‐chemical calculations. Group 10 metal (Ni, Pd, and Pt) complexes with different metal/ligand ratios were synthesized. In the case of the bipyridyl systems, coordination occurs exclusively at the pyridine N atoms, as opposed to protonation. The spin‐density distribution and the magnetism were evaluated for a series of paramagnetic NiII complexes with the aid of paramagnetic NMR spectroscopic studies in alliance with quantum‐chemical calculations and magnetic (SQUID) measurements. Through direct delocalization from the singly occupied molecular orbitals (SOMOs), a significant amount of spin density is placed on the guanidinyl groups, and spin polarization also transports spin density onto the aromatic backbone.  相似文献   

7.
A new family of cationic rhenium tricarbonyl complexes with either two N‐alkylimidazole (N‐RIm) and one pyridine (Py) ligand, or two pyridine and one N‐RIm ligand, [Re(CO)3(N‐RIm)(3?x)(Py)x]+, has been prepared. The reaction of these complexes with a strong base, followed by an oxidant, selectively afforded 2,2’‐pyridylimidazole complexes as the result of intramolecular dehydrogenative C?C coupling reactions. For tris(pyridine) complexes [Re(CO)3(Py)3]+ the reaction pattern upon a deprotonation/oxidation sequence is maintained, which allows the generation of complexes with 2,2’‐bipyridine ligands. In the particular combination of two different types of pyridine ligand in the cationic fac‐Re(CO)3 complexes only the cross‐coupling products with asymmetric 2,2’‐bipyridine ligands were obtained; the homocoupling products were not observed.  相似文献   

8.
The coordination sites of 2,6‐bis(benzimidazol‐2′‐yl)pyridine ( 1 ) toward protons and the diamagnetic metal ions Li+, Na+, and Co3+ were investigated by NMR spectroscopy. Variable temperature 1H and 13C NMR experiments were performed on 1 in order to evaluate the tautomeric equilibrium and hydrogen bonding. Imidazole dicoordinated aromatic nitrogen atoms were protonated by trichloroacetic acid and the three N‐dicoordinated atoms by fuming H2SO4. Reactions of the ligand 1 and benzimidazole 2 with metallic sodium or LiH afforded anionic species; the alkali metal ions appeared solvated by THF, but not by the ligands 1 or 2 . In contrast, reaction of 1 with Co(III) produces the stable cation [Co( 1 ‐H)2]+ with cobalt ion coordinated by two molecules of the monodeprotonated ligand. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:392–398, 2000  相似文献   

9.
Three novel chiral Schiff Base ligands (H2L) were prepared from the condensation reaction of 3‐formyl acetylacetone with the amino acids L ‐alanine, L ‐phenylalanine, and L ‐threonine. X‐ray single crystal analyses revealed that the Schiff Base compounds exist as enamine tautomers in the solid state. The molecular structure of the compounds is stabilized by an intramolecular hydrogen bridge between the enamine NH function and a carbonyl oxygen atom of the pentandione residue. Treatment of the ligands H2L with copper(II) actetate in the presence of pyridine led to the formation of copper complexes [CuL(py)]. In each of the complexes the copper atoms adopt a distorted square‐pyramidal coordination. Three of the basal coordination sites are occupied by the doubly deprotonated Schiff Bases L2– which act as tridentate chelating O, N, O‐ligands. The remaining coordination sites are occupied by a pyridine ligand at the base and a carboxyl oxygen atom of a neighboring complex at the apical position. The latter coordination is responsible for a catenation of the complexes in the solid state.  相似文献   

10.
Two examples of a rare class of di‐radical azo‐anion complexes of 2‐(arylazo) pyridine with IrIII carrier are introduced. Their electronic structures have been elucidated using a host of physical methods that include X‐ray crystallography, cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory. Room temperature magnetic moments of these are consistent with two nearly non‐interacting azo‐anion radicals. These displayed rich electrochemical properties consisting of six numbers of reversible and successive one electron CV‐waves. Redox processes occur entirely at the coordinated ligands without affecting metal redox state. Apart from reporting their chemical characterization, IV characteristics of these complexes in film state are investigated using sandwich‐type devices comprising of a thin film of 100–125 nm thickness placed between two gold‐plated ITO electrodes. These showed memory switching properties covering a useful voltage range with a reasonable ON/OFF ratio and also are suitable for RAM/ROM applications. IV characteristics of two similar complexes of Rh and Cr with identical ligand environment and electronic structure are also referred for developing an insight into the memory switching ability of Ir‐ and Rh‐ complexes on the basis of comparative analysis of responses of the respective systems. In a nutshell, thorough analysis of voltage driven redox dynamics and corresponding solid and solution state current responses of all the systems are attempted and there from an unexplored class of switching devices are systematically introduced.  相似文献   

11.
Mono-, bi-, and tetranuclear cyclopalladized complexes based on 2-(2-thienyl)pyridine and 2-phenylpyridine with pyridine and 4,4′-bipyridyl were prepared and characterized by the methods of 1H NMR, electron absorption and emission spectroscopy, and also by the voltammetry method. The values of the coordination-induced shifts of proton in the ligands of the complexes were determined; the upfield displacement of chemical shifts of protons of the cyclopalladized ligand nearest to the metal was assigned to the anisotropic action of a ring current of the pyridine rings orthogonal to the coordination plane in 4,4′-bipyridyl and pyridine. Long-wave absorption bands of the complexes were assigned to the spin-allowed optical d-π charge-transfer transitions, and the bands of the low-temperature phosphorescence, to the intraligand π-πNyyC* transitions. Three waves of the reduction of the complexes were assigned to the ligand-centered processes of successive electron transfer on π* orbitals preferentially localized on coordinated pyridine and cyclopalladized ligands.  相似文献   

12.
Coordination of a redox‐active pyridine aminophenol ligand to RuII followed by aerobic oxidation generates two diamagnetic RuIII species [ 1 a (cis) and 1 b (trans)] with ligand‐centered radicals. The reaction of 1 a / 1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)‐bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru‐N‐Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a / 1 b supports the oxidation of a nitride (N3?) to half an equivalent of N2. The trinuclear omplex is reactive toward TEMPO‐H, tin hydrides, thiols, and dihydrogen.  相似文献   

13.
A novel class of alkynylgold(III) complexes of the dianionic ligands derived from 2,6‐bis(benzimidazol‐2′‐yl)pyridine (H2bzimpy) derivatives has been synthesized and characterized. The structure of one of the complexes has also been determined by X‐ray crystallography. Electronic absorption studies showed low‐energy absorption bands at 378–466 nm, which are tentatively assigned as metal‐perturbed π–π* intraligand transitions of the bzimpy2? ligands. A computational study has been performed to provide further insights into the nature of the electronic transitions for this class of complexes. One of the complexes has been found to show gelation properties, driven by π–π and hydrophobic–hydrophobic interactions. This complex exhibited concentration‐ and temperature‐dependent 1H NMR spectra. The morphology of the gel has been characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM).  相似文献   

14.
A new class of Janus‐like ambiphilic ligands is introduced. The rigid diferrocene backbone in heterocycles 4‐SnP and 4‐BP creates an unprecedented chiral environment as demonstrated by multinuclear NMR and single‐crystal X‐ray studies. In addition, the ligands are redox‐responsive and the Lewis acidic borane moiety in 4‐BP can be exploited to further tune the properties: a clear decrease in the CO stretching frequency of a Vaska‐type RhI complex 5‐BP is observed upon addition of fluoride ions. Thus, the Lewis acid and Lewis base sites influence each other and their strength can be modulated by redox chemistry and anion binding.  相似文献   

15.
A new class of Janus‐like ambiphilic ligands is introduced. The rigid diferrocene backbone in heterocycles 4‐SnP and 4‐BP creates an unprecedented chiral environment as demonstrated by multinuclear NMR and single‐crystal X‐ray studies. In addition, the ligands are redox‐responsive and the Lewis acidic borane moiety in 4‐BP can be exploited to further tune the properties: a clear decrease in the CO stretching frequency of a Vaska‐type RhI complex 5‐BP is observed upon addition of fluoride ions. Thus, the Lewis acid and Lewis base sites influence each other and their strength can be modulated by redox chemistry and anion binding.  相似文献   

16.
The development of rhenium(I) chemistry has been restricted by the limited structural and electronic variability of the common pseudo‐octahedral products fac‐[ReX(CO)3L2] (L2=α‐diimine). We address this constraint by first preparing the bidentate bis(imino)pyridine complexes [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)3X] (X=Cl 2 , Br 3 ), which were characterized by spectroscopic and X‐ray crystallographic means, and then converting these species into tridentate pincer ligand compounds, [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2X] (X=Cl 4 , Br 5 ). This transformation was performed in the solid‐state by controlled heating of 2 or 3 above 200 °C in a tube furnace under a flow of nitrogen gas, giving excellent yields (≥95 %). Compounds 4 and 5 define a new coordination environment for rhenium(I) carbonyl chemistry where the metal center is supported by a planar, tridentate pincer‐coordinated bis(imino)pyridine ligand. The basic photophysical features of these compounds show significant elaboration in both number and intensity of the d–π* transitions observed in the UV/Vis spec tra relative to the bidentate starting materials, and these spectra were analyzed using time‐dependent DFT computations. The redox nature of the bis(imino)pyridine ligand in compounds 2 and 4 was examined by electrochemical analysis, which showed two ligand reduction events and demonstrated that the ligand reduction shifts to a more positive potential when going from bidentate 2 to tridentate 4 (+160 mV for the first reduction step and +90 mV for the second). These observations indicate an increase in electrostatic stabilization of the reduced ligand in the tridentate conformation. Elaboration on this synthetic methodology documented its generality through the preparation of the pseudo‐octahedral rhenium(I) triflate complex [(2,6‐{2,6‐Me2C6H3N?CPh}2C5H3N)Re(CO)2OTf] ( 7 , 93 % yield).  相似文献   

17.
Targeting the low-oxygen (hypoxic) environments found in many tumours by using redox-active metal complexes is a strategy that can enhance efficacy and reduce the side effects of chemotherapies. We have developed a series of CuII complexes with tridentate pyridine aminophenolate-based ligands for preferential activation in the reduction window provided by hypoxic tissues. Furthermore, ligand functionalization with a pendant CF3 group provides a 19F spectroscopic handle for magnetic-resonance studies of redox processes at the metal centre and behaviour in cellular environments. The phenol group in the ligand backbone was substituted at the para position with H, Cl, and NO2 to modulate the reduction potential of the CuII centre, giving a range of values below the window expected for hypoxic tissues. The NO2-substituted complex, which has the highest reduction potential, showed enhanced cytotoxic selectivity towards HeLa cells grown under hypoxic conditions. Cell death occurs by apoptosis, as determined by analysis of the cell morphology. A combination of 19F NMR and ICP-OES indicates localization of the NO2 complex in HeLa cell nuclei and increased cellular accumulation under hypoxia. This correlates with DNA nuclease activity being the likely origin of cytotoxic activity, as demonstrated by cleavage of DNA plasmids in the presence of the CuII nitro complex and a reducing agent. Selective detection of the paramagnetic CuII complexes and their diamagnetic ligands by 19F MRI suggests hypoxia-targeting theranostic applications by redox activation.  相似文献   

18.
A set of porphyrinoid manganese(IV) complexes with the 2,3,7,8,12,13,17,18‐octaethyl‐5,15‐di‐p‐tolylcorrolato ligand [(oedtc)MnIVX] (X = Cl, Br, I) was prepared by oxidation of a manganese(III) precursor. The most unexpected complex in this series, [(oedtc)MnIVI], was found to display significant thermal stability despite the unusual MnIV‐I bond and could be investigated by X‐ray diffraction. Attempted ligand exchange reactions of the chlorido derivative with the pseudohalide anions cyanide, azide, cyanate and thiocyanate yielded the desired [(oedtc)MnIVX] complex only as the isothiocyanate derivative while for the other species the reduction to manganese(III) was observed.  相似文献   

19.
Pyridylmethylamines or pma are versatile platforms for different catalytic transformations. Five pma‐ligands and their respective Pd complexes have been studied by liquid state NMR. By comparing 1H, 13C and 15N chemical shifts for each pma/pma–Pd couple, a general trend for the metallacycle atoms concerns variations of the electronic distribution at the pendant arm, especially at the nitrogen atom of the ligand. Moreover, the increase of the chemical shift of the pendant arm nitrogen atom from primary to tertiary amine is also related to the increase of crowding within the complex. This statement is in good agreement with X‐ray data collected for several complexes. Catalytic results for the Suzuki–Miyaura reaction involving the pma–Pd complexes showed within this series that a sterically crowded and electron‐rich ligand in the metallacycle was essential to reach the coupling product with a good selectivity. In this context, NMR study of chemical shifts of all active nuclei especially in the metallacycle could give a trend of reactivity in the studied family of pma–Pd complexes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Sterically hindering bidentate chelates, such as 2,9‐diphenyl‐1,10‐phenanthroline, form entwined complexes with copper(I) and other tetrahedrally coordinated transition‐metal centres. To prepare octahedral complexes containing two entwined tridentate ligands and thus apply a strategy similar to that used for making catenanes with tetrahedral metal centres, the use of the classical terpy ligand (terpy=2,2′:6′,2′′‐terpyridine) appears to be attractive. In fact, 6,6′′‐diphenyl‐2,2′:6′,2′′‐terpyridine (dp‐terpy) is not appropriate due to strong “pinching” of the organic backbone by coordination to the metal and thus stable entwined complexes with this ligand cannot be obtained. Herein, we report the synthesis and coordination properties of a new family of tridentate ligands, the main features of which are their endocyclic nature and non‐sterically hindering character. The coordinating fragment consists of two 8′‐phenylisoquinolin‐3′‐yl groups attached at the 2 and 6 positions of a pyridine nucleus. Octahedral complexes containing two such entangled ligands around an octahedral metal centre, such as FeII, RuII or CoIII, are highly stable, with no steric congestion around the metal. By using functionalised ligands bearing terminal olefins, double ring‐closing metathesis leads to [2]catenanes in good yield with FeII or CoIII as the templating metal centre. The X‐ray crystallography structures of the FeII precursor and the FeII catenane are also reported. These show that although significant pinching of the ligand is observed in both FeII complexes, the system is very open and no steric constraints can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号