首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenases catalyse the reversible cleavage of molecular hydrogen into protons and electrons. While most of these enzymes are inhibited under aerobic conditions, some hydrogenases are catalytically active even at ambient oxygen levels. In particular, the soluble [NiFe] hydrogenase from Ralstonia eutropha H16 couples reversible hydrogen cycling to the redox conversion of NAD(H). Its insensitivity towards oxygen has been formerly ascribed to the putative presence of additional cyanide ligands at the active site, which has been, however, discussed controversially. Based on quantum chemical calculations of model compounds, we demonstrate that spectroscopic consequences of the proposed non‐standard set of inorganic ligands are in contradiction to the underlying experimental findings. In this way, the previous model for structure and function of this soluble hydrogenase is disproved on a fundamental level, thereby highlighting the efficiency of computational methods for the evaluation of experimentally derived mechanistic proposals.  相似文献   

2.
3.
Converting CO2 into high-value chemicals has been regarded as an important solution for a sustainable low-carbon economy. In this work, we have theoretically designed an innovative strategy for the absorption and activation of CO2 by the electride N3Li, that is, 1,3,5(2,6)-tripyridinacyclohexaphane (N3) intercalated by lithium. DFT computations showed that the interaction of CO2 with N3Li leads to the catalytic complex N3Li(η2-O2C), which can initiate the radical-controlled reduction of another CO2 to form organic acids through radical reactions in the gas phase. The CO2 reduction consists of four steps: (1) The formation of N3Li(η2-O2C) through the combination of N3Li and CO2, (2) hydrogen abstraction from RH (R=H, CH3, and C2H5) by N3Li(η2-O2C) to form the radical R. and N3Li(η2-O2C)H, (3) the combination of CO2 and the radical R. to form RCOO., and (4) intermolecular hydrogen transfer from the intermediate N3Li(η2-O2C)H to RCOO.. In the whole reaction process, the CO2 moiety in the complex N3Li(η2-O2C) maintains a certain radical character at the carbon atom of CO2 and plays a self-catalyzing role. This work represents the first example of electride-sponsored radical-controlled CO2 reduction, and thus provides an alternative strategy for CO2 conversion.  相似文献   

4.
The novel [Ru(Acriphos)(PPh3)(Cl)(PhCO2)] [ 1 ; Acriphos=4,5‐bis(diphenylphosphino)acridine] is an excellent precatalyst for the hydrogenation of CO2 to give formic acid in dimethyl sulfoxide (DMSO) and DMSO/H2O without the need for amine bases as co‐reagents. Turnover numbers (TONs) of up to 4200 and turnover frequencies (TOFs) of up to 260 h?1 were achieved, thus rendering 1 one of the most active catalysts for CO2 hydrogenations under additive‐free conditions reported to date. The thermodynamic stabilization of the reaction product by the reaction medium, through hydrogen bonds between formic acid and clusters of solvent or water, were rationalized by DFT calculations. The relatively low final concentration of formic acid obtained experimentally under catalytic conditions (0.33 mol L?1) was shown to be limited by product‐dependent catalyst inhibition rather than thermodynamic limits, and could be overcome by addition of small amounts of acetate buffer, thus leading to a maximum concentration of free formic acid of 1.27 mol L?1, which corresponds to optimized values of TON=16×103 and TOFavg≈103 h?1.  相似文献   

5.
Guanidines and amidines prove to be highly efficient metal‐free catalysts for the reduction of CO2 to methanol with hydroboranes such as 9‐borabicyclo[3.3.1]nonane (9‐BBN) and catecholborane (catBH). Nitrogen bases, such as 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD), 7‐methyl‐1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (Me‐TBD), and 1,8‐diazabicycloundec‐7‐ene (DBU), are active catalysts for this transformation and Me‐TBD can catalyze the reduction of CO2 to methoxyborane at room temperature with TONs and TOFs of up to 648 and 33 h?1 (25 °C), respectively. Formate HCOOBR2 and acetal H2C(OBR2)2 derivatives have been identified as reaction intermediates in the reduction of CO2 with R2BH, and the first C?H‐bond formation is rate determining. Experimental and computational investigations show that TBD and Me‐TBD follow distinct mechanisms. The N?H bond of TBD is reactive toward dehydrocoupling with 9‐BBN and affords a novel frustrated Lewis pair (FLP) that can activate a CO2 molecule and form the stable adduct 2 , which is the catalytically active species and can facilitate the hydride transfer from the boron to the carbon atoms. In contrast, Me‐TBD promotes the reduction of CO2 through the activation of the hydroborane reagent. Detailed DFT calculations have shown that the computed energy barriers for the two mechanisms are consistent with the experimental findings and account for the reactivity of the different boron reductants.  相似文献   

6.
安欣  任飞  李晋鲁  王金福 《催化学报》2005,26(9):729-730
 采用特殊的共沉淀法制备了一种在CO2加氢和CO加氢过程中都具有很高活性的Cu/ZnO/Al2O3纳米纤维催化剂. 与商业催化剂相比,该催化剂的CO2和CO转化率、甲醇选择性和甲醇时空产率高很多. 该合成方法不需要有机试剂和复杂的过程,因此生产成本低,容易实现.  相似文献   

7.
高佳  宋夫交  程文强  葛艳  许琦 《应用化学》2020,37(2):160-167
采用溶胶-凝胶法制备了n(Cu):n(Zr)=1:1、1:2、1:4和1:8的Cu/ZrO2催化剂。 实验结果表明,当n(Cu):n(Zr)=1:4时,催化剂表现出较高的CO2转化率(8.0%)和甲醇选择性(59.5%),为了增加CO2的转化率,提高甲醇选择性,在n(Cu):n(Zr)=1:4的催化剂中添加质量分数1%的Pd,采用浸渍法制备了Pd-Cu/ZrO2催化剂。 在250 ℃、2 MPa、12000 mL/(g·h)和V(H2):V(CO2)=3:1的反应条件下,CO2转化率和CH3OH收率相比Cu/ZrO2催化剂(n(Cu):n(Zr)=1:4)分别提高了40.0%和80.9%。 通过X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、N2吸附-脱附(BET)、X射线光电子能谱仪(XPS)和程序升温还原化学吸附仪(H2-TPR)等仪器表征证明Pd的添加提高了催化剂的分散性和比表面积。 催化剂中Pd和Cu之间强相互作用,使Cu2p轨道结合能向低处偏移,还原温度的降低,说明Pd-Cu/ZrO2催化剂还原能力增强,使得CO2加氢活性提高。  相似文献   

8.
The first example of a homogeneous catalyst based on an earth‐abundant metal for the hydrogenation of organic carbonates to methanol and alcohols is reported. Based on the mechanistic investigation, which indicates metal‐ligand cooperation between the manganese center and the N?H group of the pincer ligand, we propose that the hydrogenation of organic carbonates to methanol occurs via formate and aldehyde intermediates. The reaction offers an indirect route for the conversion of CO2 to methanol, which coupled with the use of an earth abundant catalyst, makes the overall process environmentally benign and sustainable.  相似文献   

9.
10.
11.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   

12.
13.
对传统共沉淀法进行改进,在老化阶段通入CO2促进母液中前驱体物相的转变,制备了Cu/ZnO/Al2O3催化剂.N2吸附、X 射线衍射、场发射扫描电子显微镜、程序升温还原、程序升温分解结果表明,改进共沉淀法制备的催化剂前驱体中碱式硝酸铜更易转变为碱式碳酸铜,从而提高了前驱体的稳定性,并使得焙烧后的催化剂具有较大的比表面积...  相似文献   

14.
The reaction mechanism for the Zn(salphen)/NBu4X (X=Br, I) mediated cycloaddition of CO2 to a series of epoxides, affording five‐membered cyclic carbonate products has been investigated in detail by using DFT methods. The ring‐opening step of the process was examined and the preference for opening at the methylene (Cβ) or methine carbon (Cα) was established. Furthermore, calculations were performed to clarify the reasons for the lethargic behavior of internal epoxides in the presence of the binary catalyst. Also, the CO2 insertion and the ring‐closing steps have been explored for six differently substituted epoxides and proved to be significantly more challenging compared with the ring‐opening step. The computational findings should allow the design and application of more efficient catalysts for organic carbonate formation.  相似文献   

15.
16.
The new, structurally characterized hydrido carbonyl tetrahydridoborate iron pincer complex [(iPr‐PNP)Fe(H)(CO)(η1‐BH4)] ( 1 ) catalyzes the base‐free hydrogenation of ketones to their corresponding alcohols employing only 4.1 atm hydrogen pressure. Turnover numbers up to 1980 at complete conversion of ketone were reached with this system. Treatment of 1 with aniline (as a BH3 scavenger) resulted in a mixture of trans‐[(iPr‐PNP)Fe(H)2(CO)] ( 4 a ) and cis‐[(iPr‐PNP)Fe(H)2(CO)] ( 4 b ). The dihydrido complexes 4 a and 4 b do not react with acetophenone or benzaldehyde, indicating that these complexes are not intermediates in the catalytic reduction of ketones. NMR studies indicate that the tetrahydridoborate ligand in 1 dissociates prior to ketone reduction. DFT calculations show that the mechanism of the iron‐catalyzed hydrogenation of ketones involves alcohol‐assisted aromatization of the dearomatized complex [(iPr‐PNP*)Fe(H)(CO)] ( 7 ) to initially give the Fe0 complex [(iPr‐PNP)Fe(CO)] ( 21 ) and subsequently [(iPr‐PNP)Fe(CO)(EtOH)] ( 38 ). Concerted coordination of acetophenone and dual hydrogen‐atom transfer from the PNP arm and the coordinated ethanol to, respectively, the carbonyl carbon and oxygen atoms, leads to the dearomatized complex [(iPr‐PNP*)Fe(CO)(EtO)(MeCH(OH)Ph)] ( 32 ). The catalyst is regenerated by release of 1‐phenylethanol, followed by dihydrogen coordination and proton transfer to the coordinated ethoxide ligand.  相似文献   

17.
超细Cu-ZnO-ZrO2催化剂的制备及其催化CO2加氢合成甲醇的性能   总被引:26,自引:2,他引:26  
 采用溶胶-凝胶法、共沉淀法和共沸蒸馏法制备了一系列不同粒度范围的超细Cu-ZnO-ZrO2催化剂,并应用BET,XRD,TEM和TPR等物理化学方法对催化剂的结构和物化性质进行了表征,同时考察了催化剂上CO2加氢合成甲醇的反应性能.结果表明,超细Cu-ZnO-ZrO2催化剂具有粒度小、颗粒分布均匀和稳定性好的特点,并发现超细Cu-ZnO-ZrO2催化剂比大颗粒的工业Cu-ZnO-Al2O3催化剂具有更高的催化活性,而且随着催化剂粒度的减小,甲醇合成活性进一步增大.研究还发现,ZrO2具有稳定反应活性中心的作用.  相似文献   

18.
Reducing the emission of greenhouse gases, such as CO2, requires efficient and reusable capture materials. The energy for regenerating sorbents is critical to the cost of CO2 capture. Here, we design a series of photoswitchable CO2 capture molecules by grafting Lewis bases, which can covalently bond CO2, to azo‐based backbones that can switch configurations upon light stimulation. The first‐principles calculations demonstrate that intramolecular hydrogen bonds are crucial for enlarging the difference of CO2 binding strengths to the cis and trans isomers. As a result, the CO2–sorbent interaction can be light‐adjusted from strong chemical bonding in one configuration to weak bonding in the other, which may lead to a great energy reduction in sorbent regeneration.  相似文献   

19.
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.  相似文献   

20.
The hydrogenation of unsaturated carbons is a commonly used synthetic tool in pharmaceutical and industrial production. Recently, the Norton group realized highly selective hydrogenation of C=C bonds catalyzed by a rhodium hydride. Despite the great efforts made by experimentalists, details regarding the mechanism remained unclear. In this work, detailed DFT calculations were carried out to elucidate the principal features of this transformation. For enones we find that two possible competing mechanisms proposed by the experimental groups are computationally excluded, our proposed alternative mechanism with a total barrier of 20.0 kcal mol−1 is theoretically feasible, solvent methanol to also plays a crucial role in assisting β-hydrogenation in addition to being the hydrogen source for α-hydrogenation, and the cross-polarization of the substrate enone-conjugated system to result in an enhanced charge density of the α-carbon, which favors being hydrogenated first. For isolated alkenes, neither of the two possible competing mechanisms can be excluded computationally and which carbon atom is first hydrogenated depends on the electronic properties of the substrate itself. The combination of rhodium and C=C bonds changes the electronic properties of H on the rhodium hydride and enhances its hydrogenation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号