首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New boron‐dipyrromethene (BODIPY) dyes linked to viologen are prepared and their photophysical and electrochemical properties are investigated. Both synthesized molecules have similar electronic absorption spectra with the absorption maximum localized at 517 and 501 nm for dye 1 and dye 2 , respectively. They exhibit well‐defined redox behavior, highlighting the presence of BODIPY and viologen subunits, with little perturbation of the redox potential of both subunits with respect to the parent compounds. Both dyes are heavily quenched by photoinduced electron transfer from the BODIPY to the viologen subunit. The transient absorption technique demonstrates that dye 2 forms the viologen radical within a timeframe of 7.1 ps, and that the charge‐separated species has a lifetime of 59 ps. Sustained irradiation of dye 2 in the presence of a tertiary amine allows for the accumulation of BODIPY–methyl‐4,4′‐bipyridinium (BODIPY–MV+), as observed by its characteristic absorption at 396 and 603 nm. However, dye 2 does not generate catalytic amounts of hydrogen under standard conditions.  相似文献   

2.
The charge‐transfer process in noncovalent perylenediimide (PDI)/DNA complexes has been investigated by using nanosecond laser flash photolysis (LFP) and photocurrent measurements. The PDI/DNA complexes were prepared by inclusion of cationic PDI molecules into the artificial cavities created inside DNA. The LFP experiments showed that placement of the PDI chromophore at a specific site and included within the base stack of DNA led to the efficient generation of a charge‐separated state with a long lifetime by photoexcitation. When two PDI chromophores were separately placed at different positions in DNA, the yield of the charge‐separated state with a long lifetime was dependent upon the number of A–T base pairs between the PDIs, which was explained by electron hopping from one PDI to another. Photocurrent generation of the DNA‐modified electrodes with the complex was also dependent upon the arrangement of the PDI chromophores. A good correlation was obtained between observed charge separation and photocurrent generation on the PDI/DNA‐modified electrodes, which demonstrated the importance of the defined arrangement and assembly of organic chromophores in DNA for efficient charge separation and transfer in multichromophore arrays.  相似文献   

3.
Two new supramolecular architectures based on zinc phthalocyanine (Pc) and imidazolyl‐substituted perylenediimide (PDI), ZnPc/DImPDI/ZnPc 1 and ZnPc/ImPDI 2 , have been prepared. A strong electron‐donor, 8 , which contained eight tert‐octylphenoxy groups was synthesized to ensure high solubility, thereby reducing aggregation in solution and providing σ‐donor features while avoiding regioisomeric mixtures. Also, PDI units were functionalized with tert‐octylphenoxy groups at the bay positions, which provide solubility to avoid aggregation in solution, together with one and two imidazole moieties in the amide position, 6 and 4 , respectively, to be able to strongly coordinate with the ZnPc complex. Supramolecular complexation studies by 1H NMR spectroscopy and ESI‐MS demonstrate a high coordinative binding constant between imidazole‐substituted 4 or 6 and 8 . The same results were confirmed by UV/Vis and fluorescence titration studies. UV/Vis titration studies revealed the formation of a 1:1 complex ZnPc/ImPDI 2 for the systems 8 and 6 and a 2:1 complex ZnPc/DImPDI/ZnPc 1 for the interaction of 8 and 4 . The binding constant in both cases was determined to be on the order of 105 M −1. Femtosecond laser flash photolysis measurements provided a direct proof of the charge‐separated state within both supramolecular assemblies by observing the transient absorption band at 820 nm due to the zinc phthalocyanine radical cation. The lifetimes of charge‐separated states are (9.8±3) ns for triad 1 and (3±1) ns for dyad 2 . As far as we know, this is the first time that a radical ion pair has been detected in a supramolecular assembled ZnPc–PDI system and has obtained the longest lifetime of a charge‐separated state published for ZnPc–PDI assemblies.  相似文献   

4.
In a novel electron‐donor–acceptor conjugate, phthalocyanine (Pc) and perylenediimide (PDI) are connected through a trans‐platinum(II) diacetylide linker to yield Pc‐Pt‐PDI 1 . In the ground state, the presence of PtII disrupts the electronic communication between the two electroactive components, as revealed by UV/Vis spectroscopy and electrochemical studies. The photophysical behavior of 1 is compared with that of the corresponding Pc‐PDI electron‐donor–acceptor conjugate 2 in terms of charge separation and charge recombination. The insertion of PtII between Pc and PDI impacts the results in a longer‐lived Pc . +/PDI . ? radical ion‐pair state. In addition, the intermediately formed Pc triplet excited state is formed with higher quantum yields in 1 than in 2 .  相似文献   

5.
An electron‐donor‐acceptor‐acceptor (D‐A1‐A2) triad has been developed that provides the first proof‐of‐concept for a photoinitiated molecular circuit. After photoexcitation into an optical charge‐transfer transition between D and A1, subsequent thermal electron‐transfer from A1.? to A2 is followed by geometric rearrangement in the D.+‐A1‐A2.? charge‐separated state to form an ion‐pair contact. This facilitates “forward” charge recombination between A2.? and D.+ to complete the molecular circuit with an estimated quantum efficiency of 4 % in toluene at 298 K.  相似文献   

6.
A new naphthalenediimide (NDI) molecule, where two ferrocene (Fc) units were directly attached to both imide nitrogens ( Fc‐NDI‐Fc ), was synthesized. The Fc units provide high crystallinity to Fc‐NDI‐Fc with good solubility to conventional organic solvents. The Fc units also work as electron‐donating substituents, in contrast to the electron‐deficient NDI unit, resulting in broad charge‐transfer absorption of Fc‐NDI‐Fc from the UV region to 1500 nm in the solid state. The crystal structure analysis revealed that Fc‐NDI‐Fc formed a segregated‐stack structure. The DFT calculation based on the crystal structure showed that the NDI π‐orbitals extended over two axes. The extended π‐network of the NDI units led to the electron‐transport properties of Fc‐NDI‐Fc , which was confirmed using a flash‐photolysis time‐resolved microwave conductivity technique.  相似文献   

7.
2‐Azaxanthone, a nitrogenated derivative of the well‐studied organic chromophore xanthone, has been covalently bound through 2‐(ethylthio)ethylamido linkers to the carboxylic acid groups of short, soluble single‐walled carbon nanotubes (CNTs) of 450 nm average length, and the resulting azaxanthylium‐functionalized CNTs (AZX‐CNT, 8.5 wt % AZX content) characterized by solution 1H NMR, Raman and IR spectroscopy and thermogravimetric analysis. Comparison of the quenching of the triplet excited state of AZX (steady‐state and time‐resolved) and of the transient optical spectra of CNTs and AZX‐CNT shows that the covalent linkage boosts the interaction between the azaxanthylium moiety and the short CNT units. The triplet excited state of the azaxanthylium derivative is quenched by CNT with and without covalent bonding, but when it is covalently bonded, the singular transient spectrum is compatible with the photogeneration of electron holes through electron transfer from CNT to excited azaxanthylium units.  相似文献   

8.
Diethylamino‐substituted oligophenylenevinylene (OPV) building blocks have been prepared and used for the synthesis of two [60]fullerene–OPV dyads, F‐D1 and F‐D2 , which exhibit different conjugation length of the OPV fragments. The electrochemical properties of these acceptor–donor dyads have been studied by cyclic voltammetry. The first reduction is always assigned to the fullerene moiety and the first oxidation centered on the diethylaniline groups of the OPV rods, thus making these systems suitable candidates for photoinduced electron transfer. Both the OPV and the fullerene‐centered fluorescence bands are quenched in toluene and benzonitrile, which suggests the occurrence of photoinduced electron transfer from the amino‐substituted OPVs to the carbon sphere in the dyads in both solvents. By means of bimolecular quenching experiments, transient absorption spectral fingerprints of the radical cationic species are detected in the visible (670 nm) and near‐IR (1300–1500 nm) regions, along with the much weaker fullerene anion band at λmax=1030 nm. Definitive evidence for photoinduced electron transfer in F‐D1 and F‐D2 comes from transient absorption measurements. A charge‐separated state is formed within 100 ps and decays in less than 5 ns.  相似文献   

9.
Controlling light‐induced accumulation of electrons or holes is desirable in view of multi‐electron redox chemistry, for example for the formation of solar fuels or for photoredox catalysis in general. Excitation with multiple photons is usually required for electron or hole accumulation, and consequently pump‐pump‐probe spectroscopy becomes a valuable spectroscopic tool. In this work, we excited a triarylamine‐Ru(bpy)32+‐anthraquinone triad (bpy = 2,2′‐bipyridine) with two temporally delayed laser pulses of different color and monitored the resulting photoproducts. Absorption of the first photon by the Ru(bpy)32+ photosensitizer generated a triarylamine radical cation and an anthraquinone radical anion by intramolecular electron transfer. Subsequent selective excitation of either one of these two radical ion species then induced rapid reverse electron transfer to yield the triad in its initial (ground) state. This shows in direct manner that after absorption of a first photon and formation of the primary photoproducts, the absorption of a second photon can lead to unproductive electron transfer events that counteract further charge accumulation. In principle, this problem is avoidable by careful excitation wavelength selection in combination with good molecular design.  相似文献   

10.
5,12-Dihydro-5,12-diazatetracene (DHDAT) dimers with different substitution patterns are synthesized: a symmetric one with a C−C bond between the monomer units ( 1 ) and two asymmetric ones with a C−N bond between the monomer units ( 2 and 3 ). The DHDAT units are planar in the C−C linked dimer 1 but perpendicularly oriented in the C−N linked dimers 2 and 3 (from X-ray analysis). The electronic ground-state interaction between the two units is large in 1 and small in 2 and 3 . The emission behavior of 3 is different from that of other dimers and its monomer; it displays positive solvatochromism, characteristic for electron donor–acceptor molecules, despite its donor–donor type structure. Compound 3 exhibits a unique multi-step thermochromic emission behavior. The emission behavior is attributed to the asymmetric distribution of the HOMO and LUMO of DHDAT.  相似文献   

11.
We investigate a biomimetic model of a TyrZ/His190 pair, a hydrogen‐bonded phenol/imidazole covalently attached to a porphyrin sensitizer. Laser flash photolysis in the presence of an external electron acceptor reveals the need for water molecules to unlock the light‐induced oxidation of the phenol through an intramolecular pathway. Kinetics monitoring encompasses two fast phases with distinct spectral properties. The first phase is related to a one‐electron transfer from the phenol to the porphyrin radical cation coupled with a domino two‐proton transfer leading to the ejection of a proton from the imidazole–phenol pair. The second phase concerns conveying the released proton to the porphyrin N4 coordinating cavity. Our study provides an unprecedented example of a light‐induced electron‐transfer process in a TyrZ/His190 model of photosystem II, evidencing the movement of both the phenol and imidazole protons along an isoenergetic pathway.  相似文献   

12.
The copper‐mediated Ullmann coupling of 1,7‐dibromoperylene bisimides afforded structurally perfect singly‐linked perylene bisimide (PBI) arrays, whilst the homo‐coupling of 1,12‐dibromoperylene bisimides gave doubly‐linked and triply‐linked diperylene bisimides. The interactions of three bay‐linked diperylene bisimides that differed in their linkage (singly, doubly, and triply) were investigated in their neutral and reduced forms (mono‐anion to tetra‐anion). UV/Vis absorption and fluorescence spectroscopy revealed different degrees of interaction, which was explained by exciton coupling and conjugation effects. The electrochemical properties and spectroelectrochemistry also showed quite‐different degrees of PBI interactions in the reduced mixed‐valence species, which was apparent by the observation of CT bands. The interpretation of the experimental findings was supported by spin‐restricted and ‐unrestricted DFT and time‐dependent TD‐DFT calculations with the long‐range‐corrected CAM‐B3LYP functional. Accordingly, the degree of interaction in both the neutral and reduced forms of the bay‐linked PBIs was qualitatively in the order doubly linked<singly linked?triply linked, owing to the different degrees of twisting and flexibility between the two PBIs moieties. Only triply linked diPBI showed completely delocalized wavefunctions over the entire π‐system.  相似文献   

13.
Close to the edge : Photoexcitation of alizarin coupled to the surface of mesoporous TiO2 films leads to ultrafast electron transfer to the TiO2 conduction band (see picture). Complex kinetics after photoexcitation depend on the excitation energy, and indicate a position of the alizarin excited state close to the TiO2 conduction band edge, where the density of acceptor states is reduced.

  相似文献   


14.
The synthesis of a new azafullerene C59N–phthalocyanine (Pc) dyad is described. The key step for the synthesis of the C59N–Pc dyad was the formation of the C59N‐based carboxylic acid, which was smoothly condensed with hydroxy‐modified Pc. The structure of the C59N–Pc dyad was verified by 1H and 13C NMR spectroscopy, IR spectroscopy, UV/Vis spectroscopy and MS measurements. The photophysical and electrochemical properties of the C59N–Pc dyad were investigated in both polar and non‐polar solvents by steady state and time‐resolved photoluminescence and absorption spectroscopy, as well as by cyclic voltammetry. Different relaxation pathways for the photoexcited C59N–Pc dyad, as a result of changing the solvent polarity, were found, thus giving rise to energy‐transfer phenomena in non‐polar toluene and charge‐transfer processes in polar benzonitrile. Finally, the detailed quenching mechanisms were evaluated and compared with that of a C60–Pc dyad, which revealed that the different excited‐state energies and reduction potentials of the two fullerene spheres (i.e. C59N vs. C60) strongly diverged in the deactivation pathways of the excited states of the corresponding phthalocyanine dyads.  相似文献   

15.
A novel distyryl BODIPY–fullerene dyad is prepared. Upon excitation at the distyryl BODIPY moiety, the dyad undergoes photoinduced electron transfer to give a charge‐separated state with lifetimes of 476 ps and 730 ps in polar (benzonitrile) and nonpolar (toluene) solvents, respectively. Transient absorption measurements show the formation of the triplet excited state of distyryl BODIPY in the dyad, which is populated from charge‐recombination processes in both solvents.  相似文献   

16.
The CuA center is a dinuclear copper site that serves as an optimized hub for long‐range electron transfer in heme–copper terminal oxidases. Its electronic structure can be described in terms of a σu* ground‐state wavefunction with an alternative, less populated ground state of πu symmetry, which is thermally accessible. It is now shown that second‐sphere mutations in the CuA containing subunit of Thermus thermophilus ba3 oxidase perturb the electronic structure, which leads to a substantial increase in the population of the πu state, as shown by different spectroscopic methods. This perturbation does not affect the redox potential of the metal site, and despite an increase in the reorganization energy, it is not detrimental to the electron‐transfer kinetics. The mutations were achieved by replacing the loops that are involved in protein–protein interactions with cytochrome c, suggesting that transient protein binding could also elicit ground‐state switching in the oxidase, which enables alternative electron‐transfer pathways.  相似文献   

17.
A side-to-face array DPy-gPBI[Ru(4-tBuTPP)(CO)]2, based on a “green” perylene bisimide chromophore sandwiched between two RuII-porphyrins, has been prepared by self-assembly. Its photophysical properties have been characterized in detail by a combination of steady-state and time-resolved techniques upon selective excitation of the two different components. Different photoinduced processes are observed as a function of the excitation wavelength. Electron transfer quenching is attained upon “red light” excitation of the perylene unit, whilst an energy transfer pathway is followed upon “green light” excitation of the metallo-porphyrin moiety. Regardless of the excitation wavelength efficient population of the triplet excited state of the perylene chromophore is achieved. The photophysical results are discussed within the framework of classical electron transfer theory and compared with those of a previously reported system.  相似文献   

18.
19.
20.
A small series of donor–acceptor molecular dyads has been synthesized and fully characterized. In each case, the acceptor is a dicyanovinyl unit and the donor is a boron dipyrromethene (BODIPY) dye equipped with a single styryl arm bearing a terminal amino group. In the absence of the acceptor, the BODIPY‐based dyes are strongly fluorescent in the far‐red region and the relaxed excited‐singlet states possess significant charge‐transfer character. As such, the emission maxima depend on both the solvent polarity and temperature. With the corresponding push–pull molecules, there is a low‐energy charge‐transfer state that can be observed by both absorption and emission spectroscopy. Here, charge‐recombination fluorescence is weak and decays over a few hundred picoseconds or so to recover the ground state. Overall, these results permit evaluation of the factors affecting the probability of charge‐recombination fluorescence in push–pull dyes. The photophysical studies are supported by cyclic voltammetry and DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号