首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The treatment of enantiopure aryl dichloromethyl sulfoxides in THF with strong bases such as LDA, LiHMDS, NaHMDS, and KHMDS resulted in racemization of the sulfur stereogenic center of the sulfoxides even at ?78 °C. The rate of the racemization was found to be dependent on the alkali metal of the bases used. This is the first example of the racemization of the sulfur stereogenic center of α-sulfinyl carbanions at low temperatures.  相似文献   

2.
A new class of exceptionally stable asymmetric N‐heterocyclic germylenes, stannylenes, and plumbylenes has been successfully isolated and characterized by single‐crystal X‐ray diffraction analysis and multinuclear NMR spectroscopy. Their stability results from tetrameric supramolecular aggregation through strong intermolecular Npy→EII (E=Ge, Sn, Pb) interactions involving the nitrogen atom of a neighboring pyridine moiety. The electronic structures and stabilities of the prepared divalent derivatives of Ge, Sn, and Pb in monomeric and aggregated forms are discussed based on theoretical investigations.  相似文献   

3.
The development of disilane‐bridged donor–acceptor–donor (D‐Si‐Si‐A‐Si‐Si‐D) and acceptor–donor–acceptor (A‐Si‐Si‐D‐Si‐Si‐A) compounds is described. Both types of compound showed strong emission (λem=ca. 500 and ca. 400 nm, respectively) in the solid state with high quantum yields (Φ: up to 0.85). Compound 4 exhibited aggregation‐induced emission enhancement in solution. X‐ray diffraction revealed that the crystal structures of 2 , 4 , and 12 had no intermolecular π–π interactions to suppress the nonradiative transition in the solid state.  相似文献   

4.
The asymmetric total synthesis of (+)‐marinomycin A, a 44‐membered macrodiolide antitumor agent and antibiotic isolated from a marine actinomycete, Marinispora strain CNQ‐140, is reported. The key features of the synthesis include the highly convergent stereocontrolled construction of the monomeric hydroxy salicylate starting from asymmetric epoxidation of the σ‐symmetrical dialkenyl carbinol, and an unprecedented direct dimerization through NaHMDS‐promoted double transesterification.  相似文献   

5.
Most synthetic chemists will have at some point utilized a sterically demanding secondary amide (R2N?). The three most important examples, lithium 1,1,1,3,3,3‐hexamethyldisilazide (LiHMDS), lithium diisopropylamide (LiDA), and lithium 2,2,6,6‐tetramethylpiperidide (LiTMP)—the “utility amides”—have long been indispensible particularly for lithiation (Li‐H exchange) reactions. Like organolithium compounds, they exhibit aggregation phenomena and strong Lewis acidity, and thus appear in distinct forms depending on the solvents employed. The structural chemistry of these compounds as well as their sodium and potassium congeners are described in the absence or in the presence of the most synthetically significant donor solvents tetrahydrofuran (THF) and N,N,N’,N’‐tetramethylethylenediamine (TMEDA) or closely related solvents. Examples of hetero‐alkali‐metal amides, an increasingly important composition because of the recent escalation of interest in mixed‐metal synergic effects, are also included.  相似文献   

6.
Selective formation of 1,3,3,4,6,6‐hexamethyl‐1,4‐diaza‐3,6‐diinda‐norborane was achieved by the reaction of bis(lithiomethyl‐methylamino)methane with dimethylindium chloride by simultaneous formation of two dative metal‐carbon and two metal‐nitrogen bonds accompanied by two ring closures. The synthesis of heterometallic compounds of this type, namely 1,3,3,4,6,6‐hexamethyl‐3‐alumina‐1,4‐diaza‐6‐galla‐norborane [Me2AlCH2N(Me)]CH2[N(Me)CH2GaMe2], was also attempted by the reaction of bis(lithiomethyl‐methylamino)methane with dimethylaluminium and ‐gallium chloride. This compound is formed, but cannot be separated from the simultaneously formed homometallic compounds [Me2MCH2N(Me)]2CH2(M = Al, Ga). The compounds were identified by elemental analyses, mass spectra, NMR spectroscopy (1H, 13C), and by determination of their crystal structures in which they are present as monomers. The norbornane‐like structure is favoured over potential isomers containing three‐membered rings and over polymeric aggregation in both compounds. In addition, the crystal structure of dimethyl(dimethylaminomethyl)indium was determined by single crystal X‐ray diffraction, which shows an intermolecular aggregation into a six‐membered ring dimer.  相似文献   

7.
π‐Conjugated donor–acceptor systems based on dithiafulvene (DTF) donor units and various acceptor units have attracted attention for their linear and nonlinear optical properties. The reaction between p‐benzoquinone and a 1,3‐dithiole phosphonium salt, deprotonated by lithium hexamethyldisilazide (LiHMDS), gave a product mixture from which the Michael adduct [systematic name: dimethyl 2‐(3‐hydroxy‐6‐oxocyclohexa‐2,4‐dien‐1‐ylidene)‐2H‐1,3‐dithiole‐4,5‐dicarboxylate], C13H10O6S2, was isolated. It is likely that one of the unidentified products obtained previously by others from related reactions could be a similar Michael adduct.  相似文献   

8.
Tetramercaptotetrathiacalix[4]arene ( LH4 ) can be used as a coordination platform to bind four CuI ions at the thiolate and thioether S atoms. Donor ligands such as phosphanes can stabilize the resulting [LCu4] units, which then remain monomeric ( [(Ph3PCu)4L] ). In the absence of donor ligands, they aggregate, providing a hexamer ( [LCu4]6 ) in high yields, with a hollow‐sphere structure formed by an unprecedented Cu24S48 cage that is surrounded by the organic framework of the calixarene chalices. Preliminary NMR experiments with regard to the host‐guest chemistry in solution showed that the compound represents a polytopic host for acetonitrile and methane.  相似文献   

9.
The reaction of sodium benzoxasulfamate (nbs) with cadmium(II) and mercury(II) sulfate in aqueous solution yield the novel complexes [Cd(nbs)2(H2O)4] (1) and [Hg(nbs)2(H2O)3] ( 2 ), respectively. The complexes were characterized by elemental analyses, IR spectroscopy and X‐ray crystallography. Complex 1 is monomeric and has an octahedral arrangement in which the N‐donor nbs ligands occupy the axial positions, while the water oxygen atoms form the equatorial plane. Complex 2 is polymeric and shows a pentagonal bipyramidal arrangement achieved by the bridging of the HgN2O3 units through the weak interaction of the O atoms of the nitro group. The nbs ligands also occupy the axial positions of the pentagonal bipyramid, whereas three water and two nitro oxygen atoms constitute the pentagonal plane. The crystal structure packing in both crystals is achieved by the intermolecular hydrogen bonds involving water hydrogen atoms, nitro and sulfonyl oxygen atoms.  相似文献   

10.
Synthesis of 1,1′‐bifunctional aminophosphane complexes 3 a–e was achieved by the reaction of Li/Cl phosphinidenoid complex 2 with various primary amines (R=Me, iPr, tBu, Cy, Ph). Deprotonation of complex 3 a (R=Me) with potassium hexamethyldisilazide yielded a mixture of K/NHMe phosphinidenoid complex 4 a and potassium phosphanylamido complex 4 a′ . Treatment of complex 3 c (R=tBu) and e (R=Ph) with KHMDS afforded the first examples of K/NHR phosphinidenoid complexes 4 c and e . The reaction of complex 3 c with 2 molar equivalents of KHMDS followed by PhPCl2 afforded complexes 5 c,c′ , which possess a P2N‐ring ligand. All complexes were characterized by NMR, IR, MS, and microanalysis, and additionally, complexes 3 b – e and 5 c′ were scrutinized by single‐crystal X‐ray crystallography.  相似文献   

11.
A series of organic dyes were prepared that displayed remarkable solar‐to‐energy conversion efficiencies in dye‐sensitized solar cells (DSSCs). These dyes are composed of a 4‐tert‐butylphenylamine donor group (D), a cyanoacrylic‐acid acceptor group (A), and a phenylene‐thiophene‐phenylene (PSP) spacer group, forming a D‐π‐A system. A dye containing a bulky tert‐butylphenylene‐substituted carbazole (CB) donor group showed the highest performance, with an overall conversion efficiency of 6.70 %. The performance of the device was correlated to the structural features of the donor groups; that is, the presence of a tert‐butyl group can not only enhance the electron‐donating ability of the donor, but can also suppress intermolecular aggregation. A typical device made with the CB‐PSP dye afforded a maximum photon‐to‐current conversion efficiency (IPCE) of 80 % in the region 400–480 nm, a short‐circuit photocurrent density Jsc=14.63 mA cm?2, an open‐circuit photovoltage Voc=0.685 V, and a fill factor FF=0.67. When chenodeoxycholic acid (CDCA) was used as a co‐absorbent, the open‐circuit voltage of CB‐PSP was elevated significantly, yet the overall performance decreased by 16–18 %. This result indicated that the presence of 4‐tert‐butylphenyl substituents can effectively inhibit self‐aggregation, even without CDCA.  相似文献   

12.
The crystal structure of the title compound, [Zn‐(C7H5O2)2(C5H6N2)2], is built of monomeric [Zn(2‐apy)2(OBz)2] mol­ecules (apy is amino­pyridine and OBz is benzoate). The Zn atom lies on a twofold symmetry axis and adopts a slightly distorted tetrahedral coordination. The Zn?O distances to the non‐coordinated O atoms are long at 2.872 (3) Å. Each non‐ligating carbonyl O atom of the benzoate anion accepts one intramolecular and one intermolecular hydrogen bond from the amino group. The mol­ecules form a chain along the c axis through intermolecular N—H?O hydrogen bonds between the amino and carboxyl groups.  相似文献   

13.
In kinetic resolutions of the racemic aldehyde 1 by reaction with chiral phosphonates of type 2, all of which contain the same chiral auxiliary in the same enantiomeric form, any of the four diastereomers 3a, 3b, 4a or 4b can be obtained as the main product by an appropriate choice of reaction parameters (geometric selectivities from 66:34 to 98:2, diastereomer ratios between 93:7 and ≥99:1). The switch in stereoselectivity observed when KHMDS or NaHMDS is used as base instead of KHMDS/18-crown-6 is rationalized as resulting from a change in influence of the aldehyde α-stereocenter from Felkin-Anh-Eisenstein to chelation control.  相似文献   

14.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

15.
The title complex, [Cu(C12H9N2O)(C2H3O2)(C12H10N2O)], is a neutral CuII complex with a primary N3O2 coordination sphere. The Cu centre coordinates to both a deprotonated and a neutral molecule of N‐phenylpyridine‐2‐carboxamide and also to an acetate anion. The coordination around the metal centre is asymmetric, the deprotonated ligand providing two N donor atoms [Cu—N = 1.995 (2) and 2.013 (2) Å] and the neutral ligand providing one N and one O donor atom to the coordination environment [Cu—N = 2.042 (2) Å and Cu—O = 2.2557 (19) Å], the fifth donor being an O atom of the acetate ion [Cu—O = 1.9534 (19) Å]. The remaining O atom from the acetate ion can be considered as a weak donor atom [Cu—O = 2.789 (2) Å], conferring to the Cu complex an asymmetric octahedral geometry. The crystal structure is stabilized by intermolecular N—H...O, C—H...O and C—H...π interactions.  相似文献   

16.
In order to determine the impact of different substituents and their positions on intermolecular interactions and ultimately on the crystal packing, unsubstituted N‐phenyl‐2‐phthalimidoethanesulfonamide, C16H14N2O4S, (I), and the N‐(4‐nitrophenyl)‐, C16H13N3O6S, (II), N‐(4‐methoxyphenyl)‐, C16H16N3O6S, (III), and N‐(2‐ethylphenyl)‐, as the monohydrate, C18H18N2O4S·H2O, (IV), derivatives have been characterized by single‐crystal X‐ray crystallography. Sulfonamides (I) and (II) have triclinic crystal systems, while (III) and (IV) are monoclinic. Although the molecules differ from each other only with respect to small substituents and their positions, they crystallized in different space groups as a result of differing intra‐ and intermolecular hydrogen‐bond interactions. The structures of (I), (II) and (III) are stabilized by intermolecular N—H…O and C—H…O hydrogen bonds, while that of (IV) is stabilized by intermolecular O—H…O and C—H…O hydrogen bonds. All four structures are of interest with respect to their biological activities and have been studied as part of a program to develop anticonvulsant drugs for the treatment of epilepsy.  相似文献   

17.
Aromatized cationic [(PNN)Re(π acid)(O)2]+ ( 1 ) and dearomatized neutral [(PNN*)Re(π acid)(O)2] ( 2 ) complexes (where π acid=CO ( a ), tBuNC ( b ), or (2,6‐Me2)PhNC ( c )), possessing both π‐donor and π‐acceptor ligands, have been synthesized and fully characterized. Reaction of [(PNN)Re(O)2]+ ( 4 ) with lithiumhexamethyldisilazide (LiHMDS) yield the dearomatized [(PNN*)Re(O)2] ( 3 ). Complexes 1 and 2 are prepared from the reaction of 4 and 3 , respectively, with CO or isocyanides. Single‐crystal X‐ray structures of 1 a and 1 b show the expected trans‐dioxo structure, in which the oxo ligands occupy the axial positions and the π‐acidic ligand occupies the equatorial plane in an overall octahedral geometry about the rhenium(V) center. DFT studies revealed the stability of complexes 1 and 2 arises from a π‐backbonding interaction between the dxy orbital of rhenium, the π orbital of the oxo ligands, and the π* orbital of CO/isocyanide.  相似文献   

18.
The crystal structure of a third polymorphic form of the known 4‐(2,6‐difluorophenyl)‐1,2,3,5‐dithiadiazolyl radical, C7H3F2N2S2, is reported. This new polymorph represents a unique crystal‐packing motif never before observed for 1,2,3,5‐dithiadiazolyl (DTDA) radicals. In the two known polymorphic forms of the title compound, all of the molecules form cis‐cofacial dimers, such that two molecules are π‐stacked with like atoms one on top of the other, a common arrangement for DTDA species. By contrast, the third polymorph, reported herein, contains two crystallographically unique molecules organized such that only 50% are dimerized, while the other 50% remain monomeric radicals. The dimerized molecules are arranged in the trans‐antarafacial mode. This less common dimer motif for DTDA species is characterized by π–π interactions between the S atoms [S...S = 3.208 (1) Å at 110 K], such that the two molecules of the dimer are related by a centre of inversion. The most remarkable aspect of this third polymorph is that the DTDA dimers are co‐packed with monomers. The monomeric radicals are arranged in one‐dimensional chains directed by close lateral intermolecular contacts between the two S atoms of one DTDA heterocycle and an N atom of a neighbouring coplanar DTDA heterocycle [S...N = 2.857 (2) and 3.147 (2) Å at 110 K].  相似文献   

19.
Systematic structural perturbation has been used to fine‐tune and understand the luminescence properties of three new 1,8‐naphthalimides (NPIs) in solution and aggregates. The NPIs show blue emission in the solution state and their fluorescence quantum yields are dependent upon their molecular rigidity. In concentrated solutions of the NPIs, intermolecular interactions were found to quench the fluorescence due to the formation of excimers. In contrast, upon aggregation (in THF / H2O mixtures), the NPIs show aggregation‐induced emission enhancement (AIEE). The NPIs also show moderately high solid‐state emission quantum yields (ca. 10–12.7 %). The AIEE behaviour of the NPIs depends on their molecular rigidity and the nature of their intermolecular interactions. The NPIs 1 – 3 show different extents of intermolecular (π–π and C?H???O) interactions in their solid‐state crystal structures depending on their substituents. Detailed photophysical, computational and structural investigations suggest that an optimal balance of structural flexibility and intermolecular communication is necessary for achieving AIEE characteristics in these NPIs.  相似文献   

20.
The novel tetraphenylethylene derivative 4‐methyl‐N‐[3‐(1,2,2‐triphenylethenyl)phenyl]benzenesulfonamide (abbreviated as MTBF), C33H27NO2S, was synthesized successfully and characterized by single‐crystal X‐ray diffraction, high‐resolution mass spectroscopy and 1H NMR spectroscopy. MTBF crystallizes in the centrosymmetric monoclinic space group P21/c. In the crystal structure, the MTBF molecules are connected into a one‐dimensional band and then a two‐dimensional sheet by hydrogen bonds of the N—H…O and C—H…O types. The sheets are further linked to produce a three‐dimensional network via C—H…π interactions. The molecules aggregate via these intermolecular forces, which restrain the intramolecular motions (RIM) and decrease the energy loss in the aggregation state, so as to open the radiative channels, and thus MTBF exhibits excellent fluorescence by aggregation‐induced emission (AIE) enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号