首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the picolinyl (Pic) group as a C‐1 located directing group and N3 as versatile precursor for C5‐NH2, a novel 1‐Pic‐5‐N3 thiosialyl donor was designed and synthesized, based on which a new sialylation protocol was established. In comparison to conventional sialylation methods, the new protocol exhibited obvious advantages, including excellent α‐stereoselectivity in the absence of a solvent effect, broad substrate scope encompassing the challenging sialyl 8‐ and 9‐hydroxy groups of sialic acid acceptors, flexibility in sialoside derivative synthesis, high temperature tolerance and easy scalability. In particular, the applicability to the synthesis of complex and bioactive N‐glycan antennae when combined with the MPEP glycosylation protocol via the “latent‐active” strategy has been shown. Mechanistically, the excellent α‐stereoselectivity of the novel sialylation protocol could be attributed to the dramatic electron‐withdrawing effect of the protonated Pic groups, which was supported by control reactions and DFT calculations.  相似文献   

2.
Glycosyl ortho‐alkynylbenzoates have emerged as a new generation of donors for glycosidation under the catalysis of gold(I) complexes such as Ph3PAuOTf and Ph3PAuNTf2 (Tf=trifluoromethanesulfonate). A wide variety of these donors, including 2‐deoxy sugar and sialyl donors, are easily prepared and shelf stable. The glycosidic coupling yields with alcohols are generally excellent; even direct coupling with the poorly nucleophilic amides gives satisfactory yields. Moreover, excellent α‐selective glycosylation with a 2‐deoxy sugar donor and β‐selective sialylation have been realized. Application of the present glycosylation protocol in the efficient synthesis of a cyclic triterpene tetrasaccharide have further demonstrated the versatility and efficacy of this new method, in that a novel chemoselective glycosylation of the carboxylic acid and a new one‐pot sequential glycosylation sequence have been implemented.  相似文献   

3.
The 1,3,4,6‐tetra‐O‐acetyl‐2‐azido‐2‐deoxy‐β‐D ‐mannopyranose ( 4 ) or the mixture of 1,3,6‐tri‐O‐acetyl‐2‐azido‐2‐deoxy‐4‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐galactopyranosyl)‐β‐D ‐mannopyranose ( 10 ) and the corresponding α‐D ‐glucopyranose‐type glycosyl donor 9 / 10 reacted at room temperature with protected nucleosides 12 – 15 in CH2Cl2 solution in the presence of BF3?OEt2 as promoter to give 5′‐O‐(2‐azido‐2‐deoxy‐α‐D ‐glycosyl)nucleosides in reasonable yields (Schemes 2 and 3). Only the 5′‐O‐(α‐D ‐mannopyranosyl)nucleosides were obtained. Compounds 21, 28, 30 , and 31 showed growth inhibition of HeLa cells and hepatoma Bel‐7402 cells at a concentration of 10 μM in vitro.  相似文献   

4.
Reactions of hydrogen sulfates of quino‐ and diquino‐annelated 1,4‐dithiins 11 and 2 with DMF/hydroxylamine‐O‐sulfonic acid/Fe++ ion system took place at the α‐quinolinyl positions and led to N,N‐dimethylcarbamoyl and N‐methyl‐N‐formylaminomethyl derivatives 6 , 8 , 12 and 7 , 9 , 13 , respectively. The 1H and 13C NMR spectra of N‐methyl‐N‐formylaminomethyl derivatives 7 , 9 , 13 showed the presence of rotational isomers E and Z regarding to the N‐methyl‐N‐formylaminomethyl substituent. The spectra of 6 , 7 , 8 , 12 and 13 were completely assigned with the use of 1D and 2D NMR techniques. In the case of rotational isomers 7a and 7b , the crucial correlations came from the NOE interaction between the methylene and methyl protons from CH2N(CH3)CHO groups and benzene‐rings protons. Synthesis of 2,3‐dihydro‐1,4‐dithiino[6,5‐e]quinoline 4‐oxide 14 was presented as well.  相似文献   

5.
An efficient methodology for the synthesis of α‐Kdo glycosidic bonds has been developed with 5,7‐O‐di‐tert‐butylsilylene (DTBS) protected Kdo ethyl thioglycosides as glycosyl donors. The approach permits a wide scope of acceptors to be used, thus affording biologically significant Kdo glycosides in good to excellent chemical yields with complete α‐selectivity. The synthetic utility of an orthogonally protected Kdo donor has been demonstrated by concise preparation of two α‐Kdo‐containing oligosaccharides.  相似文献   

6.
In the racemic crystals of (1S,2R)‐ or (1R,2S)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (I), the enantiomeric mol­ecules form a dimeric structure via the N—H?O cyclic hydrogen bond of the carbamoyl moieties. In the chiral crystals of (—)‐(1S,2R)‐1‐[N‐(chloro­acetyl)­carbamoyl­amino]‐2,3‐di­hydro‐1H‐inden‐2‐yl chloro­acetate, C14H14Cl2N2O4, (II), the N—­H?O intermolecular hydrogen bond forms a zigzag chain around the twofold screw axis. The melting points and calculated densities of (I) and (II) are 446 and 396 K, and 1.481 and 1.445 Mg m?3, respectively.  相似文献   

7.
Novel L ‐alanine and L ‐glutamic acid derivatized, carbazole‐containing N‐propargylamides [N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide and N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] were synthesized and polymerized with (nbd)Rh+6‐C6H5B?(C6H5)3] (nbd = norbornadiene) as a catalyst to obtain the corresponding polymers with moderate molecular weights in high yields. Polarimetry, circular dichroism, and ultraviolet–visible spectroscopy studies revealed that both poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] took a helical structure with a predominantly one‐handed screw sense in tetrahydrofuran, CHCl3, and CH2Cl2. The helix content of poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] could be tuned by heat or the addition of a protic solvent, and the helical sense of poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] was inverted by heat in CHCl3 or in mixtures of tetrahydrofuran and CH2Cl2. Poly[N‐(9‐carbazolyl) ethyloxycarbonyl‐L ‐alanine N′‐propargylamide] and poly[N‐(9‐carbazolyl)ethyloxycarbonyl‐L ‐glutamic acid‐γ‐benzyl ester N′‐propargylamide] also took a helical structure in film states. They showed small fluorescence in comparison with the monomers and redox activity based on carbazole. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 253–261, 2007  相似文献   

8.
The title complex, bis[μ3cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidato(3−)]‐1:2:4κ7N,N′,N′′,O:O′,O′′:O′′′;2:3:4κ7O′′′:N,N′,N′′,O:O′,O′′‐bis(2,2′‐bipyridine)‐2κ2N,N′;4κ2N,N′‐dichlorido‐1κCl,3κCl‐tetracopper(II) dihydrate, [Cu4(C12H12N3O4)2Cl2(C10H8N2)2]·2H2O, consists of a neutral cyclic tetracopper(II) system having an embedded centre of inversion and two solvent water molecules. The coordination of each CuII atom is square‐pyramidal. The separations of CuII atoms bridged by cisN‐(2‐aminopropyl)‐N′‐(2‐carboxylatophenyl)oxamidate(3−) and carboxyl groups are 5.2096 (4) and 5.1961 (5) Å, respectively. A three‐dimensional supramolecular structure involving hydrogen bonding and aromatic stacking is observed.  相似文献   

9.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

10.
Debromination of N‐benzyl 4‐ or 5‐substituted α‐bromo‐α‐p‐toluenesulfonylglutarimides is achieved with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) to give the N‐benzyl 4‐ or 5‐substituted α‐p‐toluenesulfonylglutarimides. The DBU/THF system is applied to a new methodology for the synthesis of bicyclic glutarimide skeleton in moderate yields.  相似文献   

11.
3′‐Amino‐3′‐deoxyguanosine was synthesized from guanosine in eight steps and 58% overall yield. The 2′,3′‐diol of 5′‐O‐[(tert‐butyl)diphenylsilyl]‐2‐N‐[(dimethylamino)methylidene]guanosine was reacted with α‐acetoxyisobutyryl bromide and treated with 0.5n NH3 in MeOH to yield 9‐{2′‐O‐acetyl‐3′‐bromo‐5′‐O‐[(tert‐butyl)diphenylsilyl]‐3′‐deoxy‐β‐D ‐xylofuranosyl]‐2‐N‐[(dimethylamino)methylidene]guanine, which was reacted with benzyl isocyanate, NaH, and then 3.0n NaOH, and finally with Pd/C (10%) and HCO2NH4 in EtOH/AcOH to afford 3′‐amino‐3′‐deoxyguanosine.  相似文献   

12.
In the solid state, 4‐methoxy‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C10H10Cl3N3O, (I), N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H8Cl3N3, (II), 4‐chloro‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H7Cl4N3, (III), 4‐bromo‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C9H7BrCl3N3, (IV), and 4‐trifluoromethyl‐N′‐(2,2,2‐trichloroethanimidoyl)benzene‐1‐carboximidamide, C10H7Cl3F3N3, (V), display strong intramolecular N—H...N hydrogen bonding across the chelate ring and also intramolecular N—H...Cl contacts. Additional intermolecular hydrogen bonds link the molecules into chains, double chains or sheets in all cases except for compound (V). For compound (II), there are three independent molecules per asymmetric unit.  相似文献   

13.
While the gold(I)‐catalyzed glycosylation reaction with 4,6‐O‐benzylidene tethered mannosyl ortho‐alkynylbenzoates as donors falls squarely into the category of the Crich‐type β‐selective mannosylation when Ph3PAuOTf is used as the catalyst, in that the mannosyl α‐triflates are invoked, replacement of the ?OTf in the gold(I) complex with less nucleophilic counter anions (i.e., ?NTf2, ?SbF6, ?BF4, and ?BAr4F) leads to complete loss of β‐selectivity with the mannosyl ortho‐alkynylbenzoate β‐donors. Nevertheless, with the α‐donors, the mannosylation reactions under the catalysis of Ph3PAuBAr4F (BAr4F=tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate) are especially highly β‐selective and accommodate a broad scope of substrates; these include glycosylation with mannosyl donors installed with a bulky TBS group at O3, donors bearing 4,6‐di‐O‐benzoyl groups, and acceptors known as sterically unmatched or hindered. For the ortho‐alkynylbenzoate β‐donors, an anomerization and glycosylation sequence can also ensure the highly β‐selective mannosylation. The 1‐α‐mannosyloxy‐isochromenylium‐4‐gold(I) complex ( Cα ), readily generated upon activation of the α‐mannosyl ortho‐alkynylbenzoate ( 1 α ) with Ph3PAuBAr4F at ?35 °C, was well characterized by NMR spectroscopy; the occurrence of this species accounts for the high β‐selectivity in the present mannosylation.  相似文献   

14.
本文报道了一种高效专一性合成N-单甲基芳胺的方法。芳胺先与醋酐反应生成乙酰胺,再与碘甲烷在氢化钠作用下反应生成相应的N-甲基乙酰芳胺。在乙二醇中用酸水解高产率得到相应的N-单甲基芳胺。并将该方法用于药物中间体的合成。  相似文献   

15.
The synthesis and the X‐ray structural analysis of the title compound, μ‐chloro‐1:2κ2Cl‐tri­chloro‐1κCl,2κ2Cl‐tetra­methyl‐1κ2C,2κ2C‐(N‐methyl­pyrrolidin‐2‐one)‐1κO‐ditin(IV), [Sn2Cl4(CH3)4(C5H9NO)], are described. The title compound is found to exhibit a distorted trigonal–bipyramidal geometry at both SnIV atoms. The Sn—Cl—Sn angle involving the bridging chlorine ligand is 135.56 (5)°, with the Sn—Cl bond lengths being 2.5704 (13) and 3.1159 (13) Å.  相似文献   

16.
Aspartic acid‐based novel poly(N‐propargylamides), i.e., poly[N‐(α‐tert‐butoxycarbonyl)‐L ‐aspartic acid β‐benzyl ester N′‐propargylamide] [poly( 1 )] and poly[N‐(α‐tert‐butoxycarbonyl)‐L ‐aspartic acid α‐benzyl ester N′‐propargylamide] [poly( 2 )] with moderate molecular weights were synthesized by the polymerization of the corresponding monomers 1 and 2 catalyzed with (nbd)Rh+6‐C6H5B?(C6H5)3] in CHCl3 at 30 °C for 2 h in high yields. The chiroptical studies revealed that poly( 1 ) took a helical structure in DMF, while poly( 2 ) did not in DMF but did in CH2Cl2, CHCl3, and toluene. The helicity of poly( 1 ) and poly( 2 ) could be tuned by temperature and solvents. Poly( 2 ) underwent solvent‐driven switch of helical sense, accompanying the change of the tightness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5168–5176, 2005  相似文献   

17.
The title compound (systematic name: methyl 2‐{2‐[(tert‐butoxycarbonyl)amino]‐2‐methylpropanamido}‐2‐methylpropanoate), C14H26N2O5, (I), crystallizes in the monoclinic space group P21/n in two polymorphic forms, each with one molecule in the asymmetric unit. The molecular conformation is essentially the same in both polymorphs, with the α‐aminoisobutyric acid (Aib) residues adopting ϕ and ψ values characteristic of α‐helical and mixed 310‐ and α‐helical conformations. The helical handedness of the C‐terminal residue (Aib2) is opposite to that of the N‐terminal residue (Aib1). In contrast to (I), the closely related peptide Boc‐Aib‐Aib‐OBn (Boc is tert‐butoxycarbonyl and Bn is benzyl) adopts an αL‐PII backbone conformation (or the mirror image conformation). Compound (I) forms hydrogen‐bonded parallel β‐sheet‐like tapes, with the carbonyl groups of Aib1 and Aib2 acting as hydrogen‐bond acceptors. This seems to represent an unusual packing for a protected dipeptide containing at least one α,α‐disubstituted residue.  相似文献   

18.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

19.
建立了逐步合成具有重要生物活性的2-脱氧-2-氨基葡萄糖寡糖链的通用方法。采用邻苯二甲酰基保护氨基、硫代苯基为还原末端的离去基团,以氨基葡萄糖为起始原料,几种保护的几丁寡糖及结构类似物被合成:3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→4)-(3-O-乙酰基-6-O-苄基-2-脱氧-2-邻苯二甲酰亚氨基)-b-D-吡喃葡萄糖甲苷(4)、3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→4)-(3-O-乙酰基-6-O-苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖)-(1→4)-(3-O-乙酰基-6-O-苄基-2-脱氧-2-邻苯二甲酰亚氨基)-b-D-吡喃葡萄糖甲苷(6)、3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→3)-(4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基)-b-D-吡喃葡萄糖甲苷(8)、3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→3)-(4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖)- (1→3)-(4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基)- b-D-吡喃葡萄糖甲苷(10)。所合成化合物通过核磁共振和质谱分析确证了其化学结构。  相似文献   

20.
In the title compound, 1,1,6a,7,9a,10‐hexa­chloro‐2,3,5,6,8,9,11,12‐octa‐p‐tolyl‐1,6a,9a,12a‐tetraborata‐3a,4a,7,10‐tetrabora‐4a1,6b,9b,12b‐tetraoxonia‐4‐oxatetra­cyclo­penta­[1,2‐a:2,1,5‐de:1,2‐g:1,2‐i]­naphthalene di­chloro­methane pentasolvate, C64H56B8Cl6O5·5CH2Cl2, two condensed oxadiborole rings are attached to two further oxadiborole rings in a type of donor–acceptor bonding, thus forming a ten‐membered alternating (B—O)5 naphthalene‐like arrangement as the central building block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号