首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ptert‐Butylcalix[4]arene is a bowl‐shaped molecule capable of forming a range of polynuclear metal clusters under different experimental conditions. ptert‐Butylcalix[8]arene (TBC[8]) is a significantly more flexible analogue that has previously been shown to form mono‐ and binuclear lanthanide (Ln) metal complexes. The latter (cluster) motif is commonly observed and involves the calixarene adopting a near double‐cone conformation, features of which suggested that it may be exploited as a type of assembly node in the formation of larger polynuclear lanthanide clusters. Variation in the experimental conditions employed for this system provides access to Ln1, Ln2, Ln4, Ln5, Ln6, Ln7 and Ln8 complexes, with all polymetallic clusters containing the common binuclear lanthanide fragment. Closer inspection of the structures of the polymetallic clusters reveals that all but one (Ln8) are in fact based on metal octahedra or the building blocks of octahedra, with the identity and size of the final product dependent upon the basicity of the solution and the deprotonation level of the TBC[8] ligand. This demonstrates both the versatility of the ligand towards incorporation of additional metal centres, and the associated implications for tailoring the magnetic properties of the resulting assemblies in which lanthanide centres may be interchanged.  相似文献   

2.
The reaction of propargylic amines and CO2 can provide high‐value‐added chemical products. However, most of catalysts in such reactions employ noble metals to obtain high yield, and it is important to seek eco‐friendly noble‐metal‐free MOFs catalysts. Here, a giant and lantern‐like [Zn116] nanocage in zinc‐tetrazole 3D framework [Zn22(Trz)8(OH)12(H2O)9?8 H2O]n Trz=(C4N12O)4? ( 1 ) was obtained and structurally characterized. It consists of six [Zn14O21] clusters and eight [Zn4O4] clusters. To our knowledge, this is the highest‐nuclearity nanocages constructed by Zn‐clusters as building blocks to date. Importantly, catalytic investigations reveal that 1 can efficiently catalyze the cycloaddition of propargylic amines with CO2, exclusively affording various 2‐oxazolidinones under mild conditions. It is the first eco‐friendly noble‐metal‐free MOFs catalyst for the cyclization of propargylic amines with CO2. DFT calculations uncover that ZnII ions can efficiently activate both C≡C bonds of propargylic amines and CO2 by coordination interaction. NMR and FTIR spectroscopy further prove that Zn‐clusters play an important role in activating C≡C bonds of propargylic amines. Furthermore, the electronic properties of related reactants, intermediates and products can help to understand the basic reaction mechanism and crucial role of catalyst 1 .  相似文献   

3.
In this work, the largest heterometallic supertetrahedral clusters, [Zn6Ge16]4? and [Cd6Ge16]4?, were directly self‐assembled through highly‐charged [Ge4]4? units and transition metal cations, in which 3‐center–2‐electron σ bonding in Ge2Zn or Ge2Cd triangles plays a vital role in the stabilization of the whole structure. The cluster structures have an open framework with a large central cavity of diameter 4.6 Å for Zn and 5.0 Å for Cd, respectively. Time‐dependent HRESI‐MS spectra show that the larger clusters grow from smaller components with a single [Ge4]4? and ZnMes2 units. Calculations performed at the DFT level indicate a very large HOMO–LUMO energy gap in [M6Ge16]4? (2.22 eV), suggesting high kinetic stability that may offer opportunities in materials science. These observations offer a new strategy for the assembly of heterometallic clusters with high symmetry.  相似文献   

4.
The hardness of oxo ions (O2?) means that coinage‐metal (Cu, Ag, Au) clusters supported by oxo ions (O2?) are rare. Herein, a novel μ4‐oxo supported all‐alkynyl‐protected silver(I)–copper(I) nanocluster [Ag74?xCuxO12(PhC≡C)50] ( NC‐1 , avg. x=37.9) is characterized. NC‐1 is the highest nuclearity silver–copper heterometallic cluster and contains an unprecedented twelve interstitial μ4‐oxo ions. The oxo ions originate from the reduction of nitrate ions by NaBH4. The oxo ions induce the hierarchical aggregation of CuI and AgI ions in the cluster, forming the unique regioselective distribution of two different metal ions. The anisotropic ligand coverage on the surface is caused by the jigsaw‐puzzle‐like cluster packing incorporating rare intermolecular C?H???metal agostic interactions and solvent molecules. This work not only reveals a new category of high‐nuclearity coinage‐metal clusters but shows the special clustering effect of oxo ions in the assembly of coinage‐metal clusters.  相似文献   

5.
The new clusters [H4Ru4(CO)10(μ‐1,2‐P‐P)], [H4Ru4(CO)10(1,1‐P‐P)] and [H4Ru4(CO)11(P‐P)] (P‐P=chiral diphosphine of the ferrocene‐based Josiphos or Walphos ligand families) have been synthesised and characterised. The crystal and molecular structures of eleven clusters reveal that the coordination modes of the diphosphine in the [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters are different for the Josiphos and the Walphos ligands. The Josiphos ligands bridge a metal–metal bond of the ruthenium tetrahedron in the “conventional” manner, that is, with both phosphine moieties coordinated in equatorial positions relative to a triangular face of the tetrahedron, whereas the phosphine moieties of the Walphos ligands coordinate in one axial and one equatorial position. The differences in the ligand size and the coordination mode between the two types of ligands appear to be reflected in a relative propensity for isomerisation; in solution, the [H4Ru4(CO)10(1,1‐Walphos)] clusters isomerise to the corresponding [H4Ru4(CO)10(μ‐1,2‐Walphos)] clusters, whereas the Josiphos‐containing clusters show no tendency to isomerisation in solution. The clusters have been tested as catalysts for asymmetric hydrogenation of four prochiral α‐unsaturated carboxylic acids and the prochiral methyl ester (E)‐methyl 2‐methylbut‐2‐enoate. High conversion rates (>94 %) and selectivities of product formation were observed for almost all catalysts/catalyst precursors. The observed enantioselectivities were low or nonexistent for the Josiphos‐containing clusters and catalyst (cluster) recovery was low, suggesting that cluster fragmentation takes place. On the other hand, excellent conversion rates (99–100 %), product selectivities (99–100 % in most cases) and good enantioselectivities, reaching 90 % enantiomeric excess (ee) in certain cases, were observed for the Walphos‐containing clusters, and the clusters could be recovered in good yield after completed catalysis. Results from high‐pressure NMR and IR studies, catalyst poisoning tests and comparison of catalytic properties of two [H4Ru4(CO)10(μ‐1,2‐P‐P)] clusters (P‐P=Walphos ligands) with the analogous mononuclear catalysts [Ru(P‐P)(carboxylato)2] suggest that these clusters may be the active catalytic species, or direct precursors of an active catalytic cluster species.  相似文献   

6.
As a new member of the water‐soluble calixarene family, p‐sulfonatothiacalix[4]arene possesses unique properties resulting from its inherent structural characteristics. In our recent research, we have investigated the self‐assembly of bowl‐like p‐sulfonatothiacalix[4]arenes with or without transition‐metal ions in the presence of suitable guests. We have obtained a series of compounds with different structural motifs, such as capsules, tetranuclear clusters, and molecular clefts. In addition, p‐sulfonatothiacalix[4]arenes show good inclusion abilities and can capture different guests by utilizing their hydrophobic cavities through supramolecular interactions. Even when a cone‐like conformation is fixed, the p‐sulfonatothiacalix[4]arene can also splay its opposite aromatic rings apart to adjust its cone‐like conformations from C4v to C2v and even lower symmetries. All of these show that it is a good candidate for the research of inclusion phenomena. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 155–168; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800033  相似文献   

7.
Five new coordination polymers, namely, [Ni2(L)2(4, 4′‐bipy)3)] · H2O]n ( 1 ), [Ni2(L)2(O) (bpp)2]n ( 2 ), [Zn(L)(bib)0.5]n ( 3 ), [Zn(L)(PyBIm)]n ( 4 ), and [Zn3(L)2(OH)(im)]n ( 5 ) [H2L = benzophenone‐2, 4′‐dicarboxylic acid, 4, 4′‐bipy = 4, 4′‐bipyridine, bpp = 1, 3‐bis(4‐pyridyl)propane, PyBIm = 2‐(4‐pyridyl)benzimidazole, and im = imidazole] were synthesized under hydrothermal conditions. Structure determination revealed that compound 1 is a 3D network and exhibits a 4‐connected metal‐organic framework with (42.63.8) topology, whereas compounds 2 , 3 , 4 , and 5 are two‐dimensional layer structures. In compounds 2 – 4 , dinuclear metal clusters are formed through carboxylic groups. In compound 5 , trinuclear metal clusters are formed through μ3‐OH and carboxylic groups. The carboxylic groups exhibit three coordination modes in compounds 1 – 5 : monodentately, bidentate‐chelating, and bis‐monodentately. Furthermore, the luminescent properties for compounds 3 , 4 , and 5 were investigated.  相似文献   

8.
Two calixarene‐based bis‐alkynyl‐bridged AuI isonitrile complexes with two different crown ether pendants, [{calix[4]arene‐(OCH2CONH‐C6H4C≡C)2}{Au(CNR)}2] (R=benzo[15]crown‐5 ( 1 ); R=benzo[18]crown‐6 ( 2 )), together with their related crown‐free analogue 3 (R=C6H3(OMe)2‐3,4) and a mononuclear gold(I) complex 4 with benzo[15]crown‐5 pendant, have been designed and synthesized, and their photophysical properties have been studied. The X‐ray structure of the ligand, calix[4]arene‐(OCH2CONH‐C6H4C?CH)2 has been determined. The cation‐binding properties of these complexes with various metal ions have been studied using UV/Vis, emission, 1H NMR, and ESI‐MS techniques, and DFT calculations. A new low‐energy emission band associated with Au???Au interaction could be switched on upon formation of the metal ion‐bound adduct in a sandwich fashion.  相似文献   

9.
The effects of exohedral moieties and endohedral metal clusters on the isomerization of M3N@IhC80 products from the Prato reaction through [1,5]‐sigmatropic rearrangement were systematically investigated by using three types of fulleropyrrolidine derivatives and four different endohedral metal clusters. As a result, all types of derivatives provided the same ratios of the isomers for a given trimetallic nitride template (TNT) as the thermodynamic products, thus indicating that the size of the endohedral metal clusters inside C80 was the single essential factor in determining the equilibrium between the [6,6]‐isomer (kinetic product) and the [5,6]‐isomer. In all the derivatives, the [6,6]‐ and [5,6]‐Prato adducts with larger metal clusters, such as Y3N and Gd3N, were equally stable, which is in good agreement with DFT calculations. The reaction rate of the rearrangement was dependent on both the substituent of exohedral functional groups and the endohedral metal‐cluster size. Further DFT calculations and 13C NMR spectroscopic studies were employed to rationalize the equilibrium in the rearrangement between the [6,6]‐ and [5,6]‐fulleropyrrolidines.  相似文献   

10.
Valence‐to‐core X‐ray emission spectroscopy (V2C XES) has been applied to a series of compounds relevant to both homogeneous catalysts and intermediates in heterogeneous reactions, namely [Fe(CO)5], [Fe2(CO)9], [Fe3(CO)12], [Fe(CO)3(cod)] (cod=cyclo‐octadienyl), [Fe2Cp2(CO)4] (Cp=cyclo‐pentadienyl), [Fe2Cp*2(CO)4] (Cp*=tetramethylcyclopentadienyl), and [FeCp(CO)2(thf)][B(ArF)4] (ArF=pentafluorophenyl). DFT calculations of the V2C XES spectra show very good agreement with experiment, which allows for an in depth analysis of the origins of the observed spectral signatures. It is demonstrated that the observed spectral features can be broken down into specific ligand and metal fragment contributions. The relative intensities of the observed features are further explained through a quantitative investigation of the metal 3p and 4p contributions to the spectra. The ability to use V2C XES to separate carbonyl, hydrocarbon, and solvent contributions is highlighted.  相似文献   

11.
Although great achievements have been made in the synthesis of giant lanthanide clusters, novel structural models are still scarce. Herein, we report a giant lanthanide cluster Dy76, constructed from [Dy33‐OH)4] and [Dy54‐O)(μ3‐OH)8] building blocks. As the largest known Dy cluster, the structure of Dy76 can be seen as arising from the fusion of two Dy48 clusters; these clusters can be isolated under various synthetic conditions and were characterized by single‐crystal X‐ray diffraction. This new, fused structural model of the pillar motif has not been found in Ln clusters. Furthermore, the successful conversion of Dy76 back into Dy48 in a retrosynthetic manner supports the proposed fusion formation mechanism of Dy76. Electrospray ionization mass spectrometry (ESI‐MS) analysis suggests that the metal cluster skeleton of Dy76 shows good stability in various solvents. This work not only reveals a new structural type of Ln clusters but also provides insight into the novel fusion assembly process.  相似文献   

12.
《中国化学》2017,35(12):1824-1828
Two structurally characterized metal‐cluster‐centered supramolecular architectures named [Ag8(1,2‐(C ≡ C)2‐C6H4 )( Py[6] )(CF3CO2 )6] · 2.5MeOH ( 1 ) and [Ag12(1,2,4,5‐(C ≡ C)4C6H2 )( Py[6] )2(CF3SO3 )8]·4MeOH ·3H2O ( 2 ) are synthesized through the interaction with a bowl‐shaped macrocyclic ligand Py[6] . Particularly, two dissimilar silver(I) clusters are resulted in 2 within the structure under the influence of the macrocyclic ligand Py[6] . Such dissimilarity of the silver(I) cluster is also reflected on the structural and photophysical differences between 1 and 2 .  相似文献   

13.
Methylene‐bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis‐calix[4]arenes and transition metal ions or 3d‐4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.  相似文献   

14.
A new class of rare‐earth‐metal alkynyl complexes has been prepared. The reactions of the tris(tetramethylaluminate)s of lanthanum, praseodymium, samarium, yttrium, holmium, and thulium, [Ln(AlMe4)3], with phenylacetylene afforded compounds [Ln{(μ‐C?CPh)2AlMe2}3] (Ln=La ( 1 ), Pr ( 2 ), Sm ( 3 ), Y ( 4 ), Ho ( 5 ), Tm ( 6 )). All of these compounds have been characterized by NMR spectroscopy, X‐ray crystallography, and by elemental analysis. NMR spectroscopic studies of the series of para‐ magnetic compounds [Ln(AlMe4)3] and [Ln{(μ‐C?CPh)2AlMe2}3] have also been performed.  相似文献   

15.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ⋅ 2 ) or a [3×3] cluster ( 1 ⋅ 2 ⋅ 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

16.
A topologically complex peptide [4]catenane with the crossing number of 12 was synthesized by a folding and assembly strategy wherein the folding and metal‐directed self‐assembly of a short peptide fragment occur simultaneously. The latent Ω‐looped conformation of the Pro‐Gly‐Pro sequence was found only when pyridines at the C‐ and N‐termini coordinatively bind metal ions (AgI or AuI). Crystallographic studies revealed that the Ω‐looped motifs formed four M3L3 macrocycles that were intermolecularly entwined to generate an unprecedented peptide [4]catenane topology.  相似文献   

17.
A tray‐shaped PdII3AuI3 complex ( 1 ) is prepared from 3,5‐bis(3‐pyridyl)pyrazole by means of tricyclization with AuI followed by PdII clipping. Tray 1 is an efficient scaffold for the modular assembly of [3×n] AuI clusters. Treatment of 1 with the AuI3 tricyclic guest 2 in H2O/CH3CN (7:3) or H2O results in the selective formation of a [3×2] cluster ( 1 ? 2 ) or a [3×3] cluster ( 1 ? 2 ? 1 ), respectively. Upon subsequent addition of AgI ions, these complexes are converted to an unprecedented Au3–Au3–Ag–Au3–Au3 metal ion cluster.  相似文献   

18.
The reaction of protein‐bound iron–sulfur (Fe‐S) clusters with nitric oxide (NO) plays key roles in NO‐mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe‐S clusters has been hampered by a lack of information about the nature of the iron‐nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe‐4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe2(NO)4(Cys)2]) and Roussin's Black Salt (RBS, [Fe4(NO)7S3]. In the latter case, the absence of 32S/34S shifts in the Fe?S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates.  相似文献   

19.
Gas‐phase clusters are deemed to be σ‐aromatic when they satisfy the 4n+2 rule of aromaticity for delocalized σ electrons and fulfill other requirements known for aromatic systems. While the range of n values was shown to be quite broad when applied to short‐lived clusters found in molecular‐beam experiments, stability of all‐metal cluster‐like fragments isolated in condensed phase was previously shown to be mainly ascribed to two electrons (n=0). In this work, the applicability of this concept is extended towards solid‐state compounds by demonstrating a unique example of a storable compound, which was isolated as a stable [K([2.2.2]crypt)]+ salt, featuring a [Au2Sb16]4? cluster core possessing two all‐metal aromatic AuSb4 fragments with six delocalized σ electrons each (n=1). This discovery pushes the boundaries of the original idea of Kekulé and firmly establishes the usefulness of the σ‐aromaticity concept as a general idea for both small clusters and solid‐state compounds.  相似文献   

20.
Luminescent metal clusters show promise for applications in imaging and sensing. However, promoting emission from metal clusters at room temperature is a challenging task owing to the lack of an efficient approach to suppress the nonradiative decay process in metal cores. We report herein that the addition of a silver atom into a metal interstice of the radarlike thiolated silver cluster [Ag27(StBu)14(S)2(CF3COO)9(DMAc)4]?DMAc ( NC1 , DMAc=dimethylacetamide), which is non‐emissive under ambient conditions, produced another silver cluster [Ag28(AdmS)14(S)2(CF3COO)10(H2O)4] ( NC2 ) that displayed bright green room‐temperature photoluminescence aided by the new ligand 1‐adamantanethiol (AdmSH). The 28th Ag atom, which hardly affects the geometrical and electronic structures of the Ag–S skeleton, triggered the emission of green light as a result of the rigidity of the cluster structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号