首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solutions of Rh2(OAc)4 and Et4N[Cp*Ir(CN)3] react to afford crystals of the one-dimensional coordination solid [Et4N[Cp*Ir(CN)3][Rh2(OAc)4]]. This reaction is reversed by coordinating solvents such as MeCN. The structure of the polymer consists of helical anionic chains containing Rh2(OAc)4 units linked via two of the three CN ligands of Cp*Ir(CN)3-. Use of the more Lewis acidic Rh2(O2CCF3)4 in place of Rh2(OAc)4 gave purple [(Et4N)2[Cp*Ir(CN)3]2[Rh2(O2CCF3)4]3], whose insolubility is attributed to stronger Rh-NC bonds as well as the presence of cross-linking. The species [[Cp*Rh(CN)3][Ni(en)n](PF6)] (n = 2, 3) crystallized from an aqueous solution of Et4N[Cp*Rh(CN)3] and [Ni(en)3](PF6)2; [[Cp*Rh(CN)3][Ni(en)2](PF6)] consists of helical chains based on cis-Ni(en)(2)2+ units. Aqueous solutions of Et4N[Cp*Ir(CN)3] and AgNO3 afforded the colorless solid Ag-[Cp*Ir(CN)3]. Recrystallization of this polymer from pyridine gave the hemipyridine adduct [Ag[Ag(py)][Cp*Ir(CN)3]2]. The 13C cross-polarization magic-angle spinning NMR spectrum of the pyridine derivative reveals two distinct Cp* groups, while in the pyridine-free precursor, the Cp*'s appear equivalent. The solid-state structure of [Ag[Ag(py)][Cp*Ir(CN)3]2] reveals a three-dimensional coordination polymer consisting of chains of Cp*Ir(CN)3- units linked to alternating Ag+ and Ag(py)+ units. The network structure arises by the linking of these helices through the third cyanide group on each Ir center.  相似文献   

2.
The reaction of the (borole)rhodium iodide complex [(η-C4H4BPh)RhI]4 with Cp*Li afforded the sandwich compound Cp*Rh(η-C4H4BPh) (4). The reactions of compound 4 with the solvated complexes [Cp*M(MeNO2)3]2+(BF 4 )2 gave triple-decker cationic complexes with the central borole ligand [Cp*Rh(η-η55-C4H4BPh)MCp*]2+(BF 4 )2 (M = Rh (5) or Ir (7)). The structure of complex 4 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1525–1527, September, 2006.  相似文献   

3.
By single crystal X-ray diffraction the crystal structure of a series of [M(NH3)5Cl]WO4 (M = Cr, Rh) complex salts is determined. The features of thermal expansion of the single crystal of [Cr(NH3)5Cl]WO4 are studied by low- and high-temperature X-ray diffractometry in the temperature range from ?173°C to +127°C. It is shown that with an increase in the temperature, W-O distances and ∠O-W-O bond angles equalize and the average W-O distances decrease by 0.012 Å. The thermal properties of the salts in different gaseous atmospheres are examined and the phase composition of the obtained products is studied.  相似文献   

4.
The molecular box [CpCo(CN)3]4[Cp*Ru]4 (Co4Ru4) reacts readily with a variety of monocations to form M⊂Co4Ru4+ (M=K+, Cs+, Rb+). Ion competition experiments, monitored by ESI-MS, show that the molecular box binds the smaller K+ more rapidly than Cs+, but that thermodynamically Co4Ru4 prefers the larger ion. The rates of ion-insertion for K+ and Cs+ into Co4Ru4 were found to qualitatively follow second order kinetics with K+, 300 M−1 s−1 and Cs+, 36 M−1 s−1. The ratio kK/kCs qualitatively matched the ESI-MS results from ion competition experiments. The rates of ion-insertion into Co4Ru4 were found to depend on the counter anions. In particular, RbBF4 reacted with Co4Ru4 more slowly than did RbOTf. The slower rates allowed us to establish second order kinetics. 1H NMR studies reveal that the Cp signal for Co4Ru4 is very sensitive to the presence of entering ions, e.g., Rb+, whereas the corresponding Cp signal for Rb⊂Co4Ru4+ was insensitive to the presence of Rb+. The molecular structures of [Co4Ru4] · 6MeCN, [K⊂Co4Ru4]BF4 · 7MeCN, [Cs⊂Co4Ru4]BF4 · 6MeCN and [Tl⊂Co4Ru4]BF4 · 6MeCN, determined by X-ray diffraction, showed that although the compounds crystallized in the same space group I23, a correlation exists between the Ru-N/Co-C bond distances and the size of the interstitial ion.  相似文献   

5.
Condensation of cyanometalates and cluster building blocks leads to the formation of hybrid molecular cyanometalate cages. Specifically, the reaction of [Cs subset [CpCo(CN)(3)](4)[CpRu](3)] and [(cymene)(2)Ru(3)S(2)(NCMe)(3)]PF(6) produced [Cs subset [CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)][CpRu](3)](PF(6))(2), Cs subset Co(4)Ru(6)S(2)(2+). Single-crystal X-ray diffraction, NMR spectroscopy, and ESI-MS measurements show that Cs subset Co(4)Ru(6)S(2)(2+ ) consists of a Ru(4)Co(4)(CN)(12) box fused with a Ru(3)S(2) cluster via a common Ru atom. The reaction of PPN[CpCo(CN)(3)] and 0.75 equiv of [(cymene)(2)(MeCN)(3)Ru(3)S(2)](PF(6))(2) in MeCN solution produced [[CpCo(CN)(3)](4)[(cymene)(2)Ru(3)S(2)](3)](PF(6))(2), Co(4)Ru(9)S(6)(2+). Crystallographic analysis, together with NMR and ESI-MS measurements, shows that Co(4)Ru(9)S(6)(2+ ) consists of a Ru(3)Co(4)(CN)(9) "defect box" core, wherein each Ru is fused to a Ru(3)S(2) clusters. The analogous condensation using [CpRh(CN)(3)](-) in place of [CpCo(CN)(3)](-) produced the related cluster-cage Rh(4)Ru(9)S(6)(2+). Electrochemical analyses of both Co(4)Ru(9)S(6)(2+) and Rh(4)Ru(9)S(6)(2+) can be rationalized in the context of reduction at the cluster and the Co(III) subunits, the latter being affected by the presence of alkali metal cations.  相似文献   

6.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

7.
8.
Single crystals of [Zn(NH3)4]3[Mo4Te4(CN)12] (I) and [Cd(NH3)4]3[W4Te4(CN)12] (II) were obtained by applying solutions of K7[Mo4Te4(CN)12] · 11H2O and K6[W4Te4(CN)12] · 5H2O in aqueous ammonia over solutions of ZnCl2 and Cd(NO3)2 in glycerol and were characterized by X-ray diffraction analysis. The IR spectra and thermal properties of compounds I and II were examined.  相似文献   

9.
Complex salts [M(NH3)5Cl](ReO4)2, where M = Cr, Co, Ru, Rh, Ir, have been prepared. The crystal structure of [Rh(NH3)5Cl](ReO4)2 was determined by single crystal X-ray diffraction. Crystal data: a = 17.369(4) Å, b = 7.7990(16) Å, c = 11.218(2) Å, V = 1430.5(5) Å3, space group C2/m, Z = 4, d calc = 3.19 g/cm3, R = 0.0447. Complex salts from the above series are shown to be isostructural; they were defined by X-ray crystallography. Thermal decomposition of the compounds in an inert atmosphere and under hydrogen has been studied. According to X-ray phase analysis (XRPA) data, the M0.33Re0.67 (M = Co, Ru, Rh, Ir) monophase solid solutions are the products of reduction of the salts under hydrogen.  相似文献   

10.
Synthesis and Crystal Structure of a Cesium-tetraimidophosphate-diamide, Cs5[P(NH)4](NH2)2 = Cs3[P(NH)4] · 2 CsNH2 Well crystallized Cesium-tetraimidophosphate-diamide is obtained by the reaction of CsNH2 with P3N5 in autoclaves at 673 K within three days. X-ray single crystal investigations led to the following data
  • Ccca, Z = 4, a = 8.192(5) Å, b = 20.472(5) Å,
  • c = 8.252(3) Å
  • Z(F) ≥3σ(F) = 916, Z(Var.) = 32, R/Rw=1 = 0.017/0.021
The compound contains the hitherto unknown anion [P(NH)4]3?.  相似文献   

11.
Double complex salts (DCSs) with [M(NH3)5Cl]2+ (M = Rh, Ir, Co, Cr, Ru) cations and [PtBr4]2? anions were prepared in high yields. The salts were two-phase mixtures of the anhydrous and monohydro DCSs. Anhydrous analogues containing [PdBr4]2? anions with M = Cr or Ru were synthesized. All the compounds were characterized using a set of physicochemical methods. The crystal structure of chloropentaamminechromium(III) tetrabromopalladate(II) was solved: space group Pnma, Z = 4, a = 17.068(2) Å, b = 8.315(12) Å, c = 9.653(14) Å. The [M(NH3)5Cl][M′X4] (M = Rh, Ir, Co, Cr, Ru; M′ = Pd, Pt; X = Cl, Br) compounds were shown to be isostructural. The [M(NH3)5Cl][PtBr4] · H2O monohydrates are isostructural to the [M(NH3)5Cl][PdCl4] · H2O monohydrates (space group P21/c, z = 4). The properties of the compounds were comparatively analyzed. The tendencies of the thermal stability of the complexes were elucidated. The thermolysis products of the double complex salts obtained under a helium or hydrogen atmosphere were studied.  相似文献   

12.
Treatment of [Cp*Rh(H(2)O)(3)](OTf)(2) (1) with Me(3)SiNH-t-Bu in acetone gave a hydroxyl-capped half-cubane [Cp*(3)Rh(3)(mu-OH)(3)(mu(3)-OH)](OTf)(3)(t-BuNH(3)) (2). Slow diffusion of Me(3)SiN(3) in diethyl ether into compound in acetone produced an azido-capped half-cubane [Cp*(3)Rh(3)(mu-N(3))(3)(mu(3)-N(3))](OTf)(2) (3). On the other hand, treating 1 with Me(3)SiN(3) in acetone gave an azido-bridged, dinuclear rhodium(III) complex [Cp*Rh(mu-N(3))(OH(2))](2)(OTf)(2) (4). Complexes 2 and 3 represent the first azido- or hydroxyl-capped, incomplete cubane-type Rh clusters. Under appropriate conditions, complexes 2 and 3 could be converted to complex 4. The structures of all products were determined by X-ray diffraction.  相似文献   

13.
According to the results of powder X-ray diffraction study of the complex salts of composition [M(NH3)5Cl][M"Cl4] (M = Ir, Rh, or Co and M" = Pt or Pd), the anhydrous salts crystallize in the orthorhombic system (space group Pnma) and are isostructural to the [Ir(NH3)5Cl][PtCl4] complex studied previously. The unit cell parameters of the resulting salts were refined. The metal powders, which were obtained by thermal decomposition of these salts under an atmosphere of hydrogen, were studied by powder X-ray analysis.  相似文献   

14.
15.
The homoleptic complexes [Ph(4)P](2)[Co[N(CN)(2)](4)] and [Ph(4)P][M[N(CN)(2)](3)] [M = Co, Mn] have been structurally as well as magnetically characterized. The complexes containing [M[N(CN)(2)](4)](2-) form 1-D chains, which are bridged via a common dicyanamide ligand in [M[N(CN)(2)](3)](-) to form a 2-D structure. The five-atom [NCNCN](-) bridging ligands lead to weak magnetic coupling along a chain. The six [NCNCN](-) ligands lead to a (4)T(1g) ground state for Co(II) which has an unquenched spin-orbit coupling that is reflected in the magnetic properties. Long-range magnetic ordering was not observed in any of these materials.  相似文献   

16.
Thermal and photochemical interconversion occurs between the isomeric pair of tetrathiotungstate [WS4]2− clusters 1 and 2 , which were formed by thermolysis of [Cp*2Ru2S4] and [W(CO)3(MeCN)3] [Eq. (1)] and then structurally characterized. During synthesis, a dramatic redistribution of ligands between the Ru and W atoms takes place without the loss of any CO and S ligands.  相似文献   

17.
Binary complex salts of M(NH3)5Cl]2[IrCl6]Cl2 composition, where M = Co(III), Rh(III), or Ir(III), have been studied. All phases are isostructural with [M(NH3)5Cl]2[PtCl6]Cl2 complexes [M = Rh(III) and Ir(III)]; Xray structural and crystallochemical analysis have been performed.  相似文献   

18.
19.
At T 150 K the crystal structure of [Rh(NH3)5Cl]WO4 is studied: a = 11.2374(4) Å, b = 8.4857(3) Å, c = 10.5326(3) Å, V = 1004.36(6) Å3, space group Pnma, Z= 4, d x = 3.117 g/cm3. In the structure, complex ions are bound by N—H…O hydrogen bonds, with the shortest ones of 2.85–2.94 Å. Ionic packing is shown to be considered as rhombohedral with a t ≈ 5.26 Å, αt ≈ 106°. Thermal properties of the salt are studied in the hydrogen atmosphere. The product of thermal decomposition at 750°C is a mixture of three solid solutions of Rhx W 1- x based on fcc, bcc, and hcp structures. All the obtained phases are nanocrystalline. The sizes of coherent scattering regions are 10–12 nm.  相似文献   

20.
Lu  Z.  Ding  Y.  Xu  Y.  Yao  Z.  Liu  Q.  Lang  J. 《Journal of Thermal Analysis and Calorimetry》2002,70(3):985-994
Thermal analysis on two new heterometallic sulfide clusters, [PPh4]2[WS3(CuBr)3]2 and [PPh4]2[MoS3(CuBr)3]2 (where PPh4=tetraphenyl phosphonium, =pentamethylcyclopenta- dienyl), was carried out using a simultaneous TG-DTA unit in an atmosphere of flowing nitrogen and at various heating rates. Supplemented using EDS method, their thermal behavior and properties, together with the composition of their intermediate product, were examined and discussed in connection with their distinctive molecular structure as a dianion, which provided some theoretically and practically significant information. Both clusters decomposed in a two-step mode, but without a stable new phase composed of Mo/W-Cu-S formed during their decomposition process as we expected. Based on TG-DTG data, four methods, i.e. Achar-Brindley-Sharp, Coats-Redfern, Kissinger and Flynn- Wall-Ozawa equation, were used to calculate the non-isothermal kinetic parameters and to determine the most probable mechanisms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号