首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
有机-无机杂化钙钛矿型太阳能电池因其简单的制备工艺,低廉的制造成本,优异的光电转换效率,成为光伏领域的研究热点。钙钛矿光吸收材料具有消光系数高、载流子迁移率高、载流子寿命长、带隙可调控等优点。短短几年内,钙钛矿型太阳能电池的效率从最初的3.8%提高到22.1%。目前,为了获得稳定高效的钙钛矿型太阳能电池,主要有以下几个研究思路:新型器件结构设计;结构功能层的材料形貌设计;结构各功能层间的界面修饰;空穴传输材料的选择;对电极的选择。本文通过文献综述,在回顾了国内外研究者对钙钛矿型太阳能电池的研究历程的基础上,介绍了钙钛矿型太阳能电池的结构和工作原理,重点总结了电子传输层和钙钛矿层的制备工艺及优化,并讨论了钙钛矿型太阳能电池的稳定性以及展望了其商业化的前景。  相似文献   

2.
近年来,钙钛矿太阳能电池因其高效、低成本、可制成柔性器件等突出优点在光伏研究领域备受关注。本文系统综述了大面积钙钛矿电池的最新研究进展,介绍了钙钛矿太阳能电池的结构特点、发展历史、钙钛矿薄膜的主要制备技术及改善的方法等,讨论了大面积钙钛矿太阳能电池目前存在的问题、提高大面积器件效率的方法及大面积钙钛矿太阳能电池的应用研究及工业化。最后,对大面积钙钛矿太阳能电池的应用前景进行了展望。  相似文献   

3.
近年来钙钛矿太阳能电池发展迅速,全无机钙钛矿具有良好的热稳定性、高吸光系数、带隙可调、制备简单等优点备受关注.现今,无机钙钛矿太阳能电池的最高光电转化效率已达19.03%,具有很好的发展潜力.本综述将从无机钙钛矿太阳能电池的制备方法、薄膜掺杂、界面修饰对稳定性影响入手,系统介绍无机钙钛矿太阳能电池的发展并进行分析总结,并着重分析了无机钙钛矿不稳定的原因及其改善方法,最后对于无机钙钛矿太阳能电池的未来进行了展望.  相似文献   

4.
高效率钙钛矿型太阳能电池的化学稳定性及其研究进展   总被引:2,自引:0,他引:2  
近几年来, 钙钛矿太阳能电池器件光电转换效率的最高纪录不断被刷新, 但是关于钙钛矿太阳能电池稳定性的研究报道比较缺乏. 钙钛矿太阳能电池稳定性问题已经成为制约钙钛矿太阳能电池继续发展的瓶颈. 简要讨论了水氧气氛、温度变化、湿法制备、紫外光照等不同敏感环境条件下钙钛矿太阳能电池的化学稳定性问题, 进而对一定环境条件下钙钛矿太阳能电池的化学稳定性及其调控的研究现状进行了综述, 旨在更好地理解钙钛矿太阳能电池稳定性的基础理论问题, 为实现钙钛矿太阳能电池稳定性的调控提供基本依据.  相似文献   

5.
柔性钙钛矿太阳能电池是当前最高效的柔性光伏技术之一,应用前景广阔.但器件的机械稳定性制约了其综合稳定性及安全可靠性.本文综合评述了近年来国内外研究团队围绕提升柔性钙钛矿太阳能电池机械性能的研究进展,从柔性基底优化、新型柔性透明电极开发、晶粒调控、晶界改性、界面工程等不同角度分析总结了柔性钙钛矿太阳能电池机械稳定性的优化...  相似文献   

6.
贾梦珠  吕功煊 《分子催化》2020,34(4):334-340
钙钛矿太阳能电池因具有成本低、制备容易和光电性能优异等突出特点受到了广泛关注.钙钛矿太阳能电池能量转化效率已从2009年的3.8%提升到2019年的25.2%.我们在文中重点总结了钙钛矿电池吸收层的制备工艺,掺杂和晶体组成、结构调控方面取得的重要进展,以及这些突破对电池效率提高的贡献,同时也提出了钙钛矿太阳能电池发展仍需要解决的问题.  相似文献   

7.
目前,有机-无机杂化钙钛矿太阳能电池(PSC)的器件效率已经超过25%.电子传输层作为PSC中的重要组成部分在提取和传输光生电子,阻挡空穴,修饰界面,调节界面能级和减少电荷复合等方面起着关键作用.无机n型材料,例如TiO2、ZnO、SnO2和其他金属氧化物材料具有成本低和稳定性好的特点,经常在传统PSC中被用作电子传输...  相似文献   

8.
王蕾  周勤  黄禹琼  张宝  冯亚青 《化学进展》2020,32(1):119-132
近年来,新兴起的有机无机杂化钙钛矿太阳能电池突飞猛进,在短短十年里其光电转化效率从3.8%迅速发展到目前25.2%的认证效率,被视为最具有应用潜力的新型高效率太阳能电池之一。虽然钙钛矿太阳能电池具有很高的光电转换效率已与多晶硅薄膜电池相媲美,但是电池的长期稳定性仍是阻碍其商业化的一大挑战。钙钛矿表面和晶界存在大量的缺陷,界面钝化来提高钙钛矿太阳能电池的稳定性是非常重要且有效的策略。二维钙钛矿材料是有机胺层与无机层交替的层状钙钛矿,具有体积较大的有机铵阳离子,与传统的三维钙钛矿材料相比对于环境的稳定性较好,并且结构灵活可调,在三维钙钛矿表面修饰二维钙钛矿层钝化缺陷,在提高钙钛矿太阳能电池效率的同时又保证了稳定性,另外,合适的钝化剂分子也能够非常有效地钝化缺陷。本文总结了钙钛矿太阳能电池的不稳定因素,归纳了钙钛矿太阳能电池界面钝化方面的研究进展,指出了二维钙钛矿材料发展的巨大潜力以及寻找合适钝化剂分子的原则,期望能够为获得高性能的钙钛矿太阳能电池进而实现商业化提供有益的指导。  相似文献   

9.
采用钛离子掺杂钙钛矿薄膜的方法修饰钙钛矿晶界缺陷。研究表明钛离子富集在晶界处,有效地钝化了晶界缺陷,同时有助于连续、平整、高质量薄膜的形成。经过钛离子掺杂后的钙钛矿太阳能电池电流(JSC)达到22.3 mA·cm~(-2),开路电压(VOC)达1.1 V,填充因子(FF)高达72.4%,光电转换效率(PCE)优化至17.4%,远高于未掺杂钙钛矿太阳能电池。  相似文献   

10.
新型有机-无机杂化二维(2D)钙钛矿具有优良的光电性能、 结晶性和稳定性, 在太阳能电池领域引起广泛关注. 相比于三维(3D)钙钛矿, 由于有机间隔阳离子(OSC)的引入形成独特的层状晶体结构赋予了材料特殊性质: (1) 多层量子阱结构促成材料各项异性的光电性质; (2) 间隔阳离子改变前驱体团簇状态, 实现溶液中高质量的结晶; (3) 间隔层的疏水性质和抑制离子迁移作用, 从本源上改善了钙钛矿的稳定性. 近年来, 针对准2D钙钛矿太阳能电池(准2D-PSCs)展开了广泛研究, 并取得了一系列重要研究成果. 本文从准2D钙钛矿材料的晶体结构与取向、 相分布、 光电性质到器件的能量转化效率与稳定性等方面, 综合评述了近年来准 2D-PSCs的最新研究进展, 总结了晶体结构-材料性质-电池性能之间的作用机制, 并进一步展望了未来研究的趋势.  相似文献   

11.
反式结构的钙钛矿太阳能电池由于其稳定性好、迟滞效应低等优点越来越受到人们的关注. 自2013年出现以来, 其光电转换效率从最初3.9%快速提升至21.5%. 然而, 反式钙钛矿太阳能电池的光电转化效率相比于传统正置结构钙钛矿太阳能电池依然存在差距, 同时其柔性及空气稳定性和大面积制备技术的开发仍是当前急需亟待解决的难题. 本文就反式钙钛矿太阳能电池载流子传输材料的选择、界面优化及柔性器件的发展等方面进行了系统的综述, 试图总结由结构和材料优化实现反式钙钛矿太阳能电池的高效率、高稳定性、大面积及柔性制备的普遍规律.  相似文献   

12.
近年来,钙钛矿太阳电池的光电转换效率取得了爆发式增长,这与电池中钙钛矿薄膜的制备工艺和材料组分密切相关.关于钙钛矿薄膜的制备方法,相关的研究报道及综述较多,然而钙钛矿材料组分调控方面的研究梳理工作相对缺乏.本综述总结了近年来不同组分体系钙钛矿材料的研究进展,包括有机无机铅卤钙钛矿、全无机铅卤钙钛矿、少铅钙钛矿以及无铅钙钛矿.重点介绍了不同体系中具有代表性的材料组分及其对器件性能的影响,旨在梳理通过组分调控提高钙钛矿电池的效率及稳定性的研究思路,最终实现商业化应用.  相似文献   

13.
近年来,钙钛矿光伏电池(PSCs)取得了突飞猛进的发展,迄今最高认证光电转换效率达到25.7%,但是钙钛矿材料常使用有毒的重金属元素铅,对环境和人体都有极大的危害,不利于其实际应用,因此发展无铅PSCs受到越来越多的关注。锡基钙钛矿材料具有优异的光电性质,特别是带隙窄、载流子迁移率高和激子复合能低,是无铅钙钛矿中最具有潜力的材料。反式(p-i-n型)锡基PSCs由于低迟滞效应、可低温制备及低成本等优点获得普遍关注,取得了一系列重要突破,目前最高效率已经突破14%,具有巨大的发展潜力。鉴于反式锡基钙钛矿太阳能的迅速发展,本文系统综述了反式锡基PSCs制备及稳定性研究进展,尤其关注反式锡基PSCs的界面修饰、锡基钙钛矿材料性能、构筑高质量锡基钙钛矿薄膜的方法以及提高稳定性的策略,并讨论了锡基PSCs的前景展望。  相似文献   

14.
全无机钙钛矿太阳电池因其热稳定性好、载流子迁移率高,可用于制备叠层电池等优点备受关注.随着人们对全无机钙钛矿太阳电池的深入研究和制备工艺的持续优化,全无机钙钛矿太阳电池的光电转换效率已经突破19%.然而,全无机钙钛矿材料相稳定性较差,这使得实现全无机钙钛矿太阳电池在空气环境下制备和长期使用面临巨大挑战.众多科研工作者通...  相似文献   

15.
刘娇  李仁志  董献堆 《应用化学》2016,33(5):489-503
自从2009年钙钛矿材料被应用到太阳电池领域,到现在仅6年的时间里,钙钛矿型太阳电池的光伏转换效率从约3%提高到20.1%,受到全球瞩目。 本文对近年来钙钛矿型太阳电池的发展进行了综述,介绍了钙钛矿吸光材料的性能及其制备,总结了钙钛矿型太阳电池器件结构及其内在机理,探讨了该类型电池待突破的方向和可能的解决途径,阐述了钙钛矿型太阳电池的进展历程,展望了未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号