首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
Electrorheological (ER) fluids composed of α-Fe2O3 (hematite) particles suspended in silicone oil are studied in this work. The rheological response has been characterized as a function of field strength, shear rate and volume fraction. Rheological tests under DC electric fields elucidated the influence of the electric field strength, E, and volume fraction, ϕ, on the field-dependent yield stress, τy. It was found that this quantity scales with E and ϕ with a linear and parabolic dependence, respectively. The viscosities of electrified suspensions were found to increase by several orders of magnitude as compared to the unelectrified suspension at low shear rates, although at high-shear rates hydrodynamic effects become dominant and no effects of the electric field on the viscosity are observed. The work is completed with the analysis of microscopic observations of the structure acquired by the ER fluid upon application of a constant electric field. Electrohydrodynamic convection is found to be the origin of the ER response rather than the commonly admitted particle fibrillation. This fact can provide an explanation to the relationship between yield stress and electric field strength as well as the pattern of periodic structures observed in the measurement geometries.  相似文献   

2.
The effects of measuring procedures and activating additives on the electrorheological (ER) behaviour of hematite/silicone oil suspensions are analysed. The structures built up in the presence of an electric field without shear are stronger than those produced with both electric and shear fields simultaneously applied. Such differences are measurable when the field strength is not high enough to dominate over hydrodynamic interactions. Regarding the effect of additives, the ER response is enhanced by water until a certain maximum amount, beyond which the effect decreases. The increase in water concentration also leads to higher values of the electric current. Similar results are observed when Brij 30 is used. However, this surfactant only raises the yield stress at low fields. Contrary to water, the surfactant forms droplets in solution, instead of adsorbing on the hematite surface. At sufficiently high field strengths, the droplets can coalesce, enclosing the hematite particles and thus reducing the overall ER effect.  相似文献   

3.
The rheology of dispersions of polypyrrole (PPY) nanoparticles (nPPY) is compared to that of micron-sized PPY particles (CPPY), each suspended in aqueous sodium alginate. With increasing PPY volume fraction, the Newtonian viscosity of the CPPY/alginate suspensions exhibits a ??normal?? increase, whereas that of the nPPY/alginate suspensions decreases to a minimum and then increases again. Enhanced elasticity, indicative of agglomerate formation via bridging interactions with the alginate, is observed only in the CPPY rheology. By comparing doped versus dedoped nPPY particles, and investigating the effect of nPPY particle size, we conclude that the negative viscosity change of the nPPY dispersions is due to adsorption of a dense layer of alginate, resulting in a decrease in bulk alginate concentration. The viscosity upturn at higher nPPY volume fractions indicates the onset of particle agglomeration via bridging interactions with alginate. The results demonstrate improved dispersability of both doped and dedoped nPPY over CPPY particles.  相似文献   

4.
The wake characteristics of unconfined flows over triangular prisms of different aspect ratios have been numerically analysed in the present work. For this purpose, a fixed Cartesian-grid based numerical technique that involves the porous medium approach to mimic the effect of solid blockage has been utilised. Correspondingly, laminar flow simulations ranging from the sub-critical regime (before the onset of vortex shedding) to the super-critical regime have been considered here within the limits of two-dimensionality. In the sub-critical regime, correlations relating the wake bubble length with Reynolds number (Re) have been proposed for various aspect ratios. Also, the effects of aspect ratio and Reynolds Number on the drag force coefficient (CD) have been characterised for two different geometrical orientations of the prism (base or apex facing the flow). Subsequently, the critical Reynolds number at the onset of vortex shedding has been predicted for each of the aspect ratio considered, by an extrapolation procedure. The unsteady flow characteristics of the super-critical regime are finally highlighted for different aspect ratios and triangular orientations considered in the study.  相似文献   

5.
Tungsten/copper (W/Cu) particle reinforced composites were used to investigate the scaling effects on the deformation and fracture behaviour. The effects of the volume fraction and the particle size of the reinforcement (tungsten particles) were studied. W/Cu-80/20, 70/30 and 60/40 wt.% each with tungsten particle size of 10 μm and 30 μm were tested under compression and shear loading. Cylindrical compression specimens with different volumes (DS = H) were investigated with strain rates between 0.001 s−1 and about 5750 s−1 at temperatures from 20 °C to 800 °C. Axis-symmetric hat-shaped shear specimens with different shear zone widths were examined at different strain rates as well. A clear dependence of the flow stress on the deformed volume and the particle size was found under compression and shear loading. Metallographic investigation was carried out to show a relation between the deformation of the tungsten particles and the global deformation of the specimens. The size of the deformed zone under either compression or shear loading has shown a clear size effect on the fracture of the hat-shaped specimens.The quasi-static flow curves were described with the material law from Swift. The parameters of the material law were presented as a function of the temperature and the specimen size. The mechanical behaviour of the composite materials were numerically computed for an idealized axis-symmetric hat-shaped specimen to verify the determined material law.  相似文献   

6.
Rheological properties of suspensions of fibers in polymeric fluids are influenced by fiber–polymer interactions. In this paper, we investigate this influence from both experimental and modeling standpoints. In the experimental part of this investigation, we have changed the fiber–polymer interactions by treating the surface of the fibers. The resulting effects are observed using scanning electron microscopy and dynamic mechanical analysis techniques and quantified from the measurements of the viscosity in the start-up of shear flows and dynamic tests in the linear viscoelastic range region. The results are interpreted with the help of a mesoscopic rheological model developed for suspensions of fibers in viscoelastic fluids.  相似文献   

7.
We present an investigation into the effects of some of the common microelectromechanical systems (MEMS) non-linearities on their shock response and shock spectrum. As a case study, a capacitive accelerometer is selected to investigate theoretically and experimentally the effect of non-linearities due to squeeze film damping (SQFD) and electrostatic actuation. For the theoretical investigation, a non-linear single-degree-of-freedom model is used to simulate the response of the device. It is shown that, in the case of light damping, the electrostatic forces soften the microstructure and raise its deflection significantly. Dynamic pull-in instability is predicted near the dynamic range zone of the shock spectrum. On the other hand, SQFD is found to highly suppress the deflection of the microstructure in the dynamic range, while it is of less effect in the quasi-static range. Experimentally, the capacitive accelerometer is powered with a DC load and then subjected to acceleration pulses generated by a shaker. Tests are conducted while the accelerometer is operated in air, where the squeeze film effect is significant, and while placed inside a vacuum chamber. Simulation results are compared to experimental data showing excellent agreement.  相似文献   

8.
Effects of polymer addition on the rheology of o/w microemulsions   总被引:1,自引:0,他引:1  
Microemulsions are profitably employed in the pharmaceutical field to prepare drug delivery systems release for guest drugs sparingly soluble in water. In particular, they can be used for topical and transdermal administration in place of ointments or creams, on condition that their rheological properties are properly modulated. The present work concerns the analysis of the rheological effects produced by the addition of different amounts of Carbopol 940, a polymer widely used for topical applications, to an O/W microemulsion containing a lipophilic phase (Labrafac Hydro, 21 wt%) and stabilized by the surfactant (Cremophor RH40)/co-surfactant (Transcutol) couple. The contribution of the disperse phase is evaluated by comparing the linear and nonlinear properties of the Carbopol/microemulsion system (CM) with those of the corresponding aqueous Carbopol systems with co-surfactant (CWT) and without co-surfactant (CW). Four polymer concentrations (0.25%, 0.5%, 1%, and 2%) are taken into consideration. The linear viscoelastic properties of the microemulsions essentially mirror those of the corresponding aqueous Carbopol systems when the polymer concentration is sufficiently high (1–2%). In these conditions the oil phase is reasonably hosted within the meshes of the three-dimensional polymeric gel network and gives only a slight contribution to the connectivity of the whole system. Similar considerations can be drawn from the flow behavior of the systems examined in the low shear region. Received: 6 February 2000 Accepted: 13 November 2000  相似文献   

9.
The effect of pH level, ionic strength, and temperature on the theology and stability of aqueous suspensions of attapulgite clay was systematically investigated. A Rheometrics Mechanical Spectrometer with cone and plate fixtures was used to measure the steady shear viscosity of the system. The edge charges of the clay particles can be adjusted by changing the pH level of the suspending medium so as to influence the flocculation state and, consequently, the rheological behavior of the suspension. This pH effect may be counteracted by the ionic strength effect at both very high and very low pH levels where the ionic strength is high enough to cause flocculation of the electrostatically stabilized suspension. The temperature effect study indicates that the relative contribution of Brownian motion and shear flow to the viscosity is dependent on the flocculation state of the suspension.  相似文献   

10.
The results of a numerical investigation of the process of oil displacement in a stratified inhomogeneous formation on the basis of the two-phase flow model with account for capillary forces are presented. It is shown that in many cases the vertical inhomogeneity of oil reservoirs may not be a cause of nonuniform displacement and the non-recovery of large oil reserves by the time of water breakthrough to the extraction surface. The action of the capillary forces is an additional factor leading to equalization of the water propagation front in the inhomogeneous formation, water breakthrough delay, and intensification of the mass transfer between the layers with different permeabilities. Analysis of the contribution of the interlayer flows to the water flooding of low-permeability formation intervals calls into question the practicability of blocking high-permeability inclusions in the neighborhood of pumping wells.  相似文献   

11.
Most hydrodynamic fluidized bed models,including CFD codes,neglect any effects of the plenum chamber volume.Experiments were performed in a 0.13 m ID fluidization column to determine plenum chamber volume effects on fluidized bed hydrodynamics for FCC and glass particles.Two low-pressure-drop distributors were used,one with a single orifice,and the other with 33 orifices and the same total open area as the single orifice.The results show two peaks in the frequency spectra for the single-orifice distributor,...  相似文献   

12.
IntroductionFlowoffibresuspensionshasbeenveryfamiliarinmanyindustrialfields.Fibreadditivesplayanimportantroleindragreductioninmanytypesofflow[1- 3].Inthesuspensions,somebehavioroftheflowmaybealteredbythefibres.Oneoftheimportantexamplesisthehydrodynamicsta…  相似文献   

13.
Due to the incompatibility of the interlaminar deformations,the interface debonding or cracking usually happens in a layered magnetoelectric(ME)structure under an applied load.In this paper,the transient responses of the anti-plane interface cracks in piezoelectric(PE)-piezomagnetic(PM)sandwich structures are studied by the standard methods of the integral transform and singular integral equation.Discussion on the numerical examples indicates that the PE-PM-PE structure under electric impact is more likely to fracture than the PM-PE-PM structure under a magnetic impact.The dynamic stress intensity factors(DSIFs)are more sensitive to the variation of the active layer thickness.The effects of the material constants on the DSIFs are dependent on the roles played by PE and PM media during the deformation process.  相似文献   

14.
In this Note we are interested in the relation between the symmetry properties of the global mode envelopes in wake flows and the spectra of the drag and lift forces. We consider the “impulse” formula for the hydrodynamic force and show that the drag force consists of contributions from the even harmonics, and the lift force of contributions from the odd harmonics, only. Our argument explains this well-known empirical fact and is also supported by the computational evidence we provide. Finally, we identify the unsteady wake flows, both controlled and uncontrolled, as belonging to a broader family of “streaming flows”. To cite this article: B. Protas, J.E. Wesfreid, C. R. Mecanique 331 (2003).  相似文献   

15.
The effects of varying the mass and volume of ground chip and pellet particles on the particle drying rate were analyzed. Samples of whole pellets and chips were hammer milled using a 3.2 mm screen and the ground chip and pellet particles were found to have similar size distributions, although the pellet particles were denser and more spherical than the chip particles. Prior to drying, water was added to the particles to obtain 0.10, 0.30, 0.50, 0.70, and 0.90 moisture contents (on a dry mass basis). The moistened particles were subsequently dried in a constant temperature thin layer dryer set at 50, 100, 150, or 200 °C under dry pure nitrogen, dry compressed air, or atmospheric air. The chip and pellet particles exhibited similar degrees of shrinkage, but the pellet particles underwent a greater reduction in their bulk volume during drying. It appears that the more spherical pellet particles are prone to shrinkage in more than one direction, whereas the needle-like chip particle shrink only in one direction. A variable radius first order drying model was found to fit the experimental data better than a fixed radius model.  相似文献   

16.
The paper considers the flow of a power-law fluid past a vertical stretching sheet. Effects of variable thermal conductivity and non-uniform heat source/sink on the heat transfer are addressed. The thermal conductivity is assumed to vary linearly with temperature. Similarity transformation is used to convert the governing partial differential equations into a set of coupled, non-linear ordinary differential equations. Two different types of boundary heating are considered, namely Prescribed power-law Surface Temperature (PST) and Prescribed power-law Heat Flux (PHF). Shooting method is used to obtain the numerical solution for the resulting boundary value problems. The effects of Chandrasekhar number, Grashof number, Prandtl number, non-uniform heat source/sink parameters, wall temperature parameter and variable thermal conductivity parameter on the dynamics are shown graphically in several plots. The skin friction and heat transfer coefficients are tabulated for a range of values of the parameters. Present study reveals that in a gravity affected flow buoyancy effect has a significant say in the control of flow and heat transfer.  相似文献   

17.
Pool boiling in microgravity, in the presence of an electric field or less, was investigated in ARIEL test setup, integrated in Fluidpac facility, on Foton-M2 orbital mission. The nucleate boiling curve with FC-72 was measured in terrestrial and reduced gravity conditions, on a heated surface whose size was relevant from a technical point of view, for various degrees of fluid subcooling and high heat rates. An external electrostatic field was also added to investigate its use as a possible replacement of buoyancy. Counterpart tests were carried out in the same apparatus in normal gravity, before the mission. The present paper deals in particular with the comparison between boiling performance in normal and reduced gravity in the entire experimental range.  相似文献   

18.
In this work the relationship between the structural disorder and the macroscopic mechanical behavior of nanoporous gold under uniaxial compression was investigated, using the finite element method. A recently proposed model based on a microstructure consisting of four-coordinated spherical nodes interconnected by cylindrical struts, whose node positions are randomly displaced from the lattice points of a diamond cubic lattice, was extended. This was done by including the increased density as result of the introduced structural disorder. Scaling equations for the elastic Poisson's ratio, the Young's modulus and the yield strength were determined as functions of the structural disorder and the solid fraction. The extended model was applied to identify the elastic–plastic behavior of the solid phase of nanoporous gold. It was found, that the elastic Poisson's ratio provides a robust basis for the calibration of the structural disorder. Based on this approach, a systematic study of the size effect on the yield strength was performed and the results were compared to experimental data provided in literature. An excellent agreement with recently published results for polymer infiltrated samples of nanoporous gold with varying ligament size was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号