首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A density functional theory (DFT) study-based method B3LYP/6-311++G** was carried out to investigate the methyl groups substitution effect on the structure and the strength of intramolecular hydrogen bonding in naphthazarin (NZ) (5,8-dihydroxy-1,4-naphthoquinone). The full geometry optimization of molecular structures, the difference between the energies of hydrogen-bonded and non-hydrogen-bonded rotamers, and the proton chemical shift of the hydroxyl groups in NZ and its methyl substituents obtained at the B3LYP/6-311++G** level. The vibrational frequencies of all samples and their deuterated analogues were calculated at the same theoretical level. The 1H chemical shifts for NZ and its methyl substituents were computed at the B3LYP/6-311++G** level using the gauge-including atomic orbital method. Furthermore, in order to investigate the changes in bond order, electron density, electron delocalization, and steric effects caused by methyl substituents, natural bond orbital analysis were carried out at the B3LYP/6-311++G** level. After comparing these effective parameters in methyl substituents with those of their parent, NZ, we concluded that, in general, intramolecular hydrogen bonding strength increases by substituting methyl groups in the different positions of NZ.  相似文献   

2.
Homodesmotic reactions were designed for the computation of strain energies (SE) for four nitro-substituted 1,3,5,7-tetraazacubane derivatives. Total energies of the optimized geometric structures at the DFT-B3LYP/6-31G* and DFT-B3LYP/6-311G** levels were used to derive the SE. The variation of SE with respect to the number of substituents is similar with both basis sets. The SE value is 237.32 kcal/mol at the B3LYP/6-311G** level for 2,4,6,8-tetranitro-1,3,5,7-tetraazacubane, which is unexpectedly much larger than that of its cubane analogue. The SE increases remarkably with more nitro groups being attached to the cage skeleton of tetraazacubane. The ‘bending’ of the bonds within the cubic skeleton attributes to the increase of strains as the attached number of nitro groups increases.  相似文献   

3.
The heats of formation (HOFs) of heterocyclic nitro compounds were obtained by using a density functional theory B3LYP method with 6‐31G* and 6‐311+G** basis sets. The isodesmic reactions designed for the evaluation of HOFs keep most of the basic ring structures of the title compounds and thus ensure the credibility of the results. The values of HOFs are 567.90, 874.29 and 975.83 kJ/mol at the B3LYP/6‐31G* level for hexanitrohexazaadamantane ( A ), nonanitrononaza‐tetracyclo[7.3.1.13,7.15,11] pentadecane ( B ) and tetranitrotetrazacubane ( C ) respectively. The predicted detonation velocities of the title compounds are larger than, and detonation pressures are much larger than that of the widely used 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane (HMX). The dissociation energy for the weakest C‐N bonds in the cage skeleton of the title compounds are 137‐144 kJ/mol at the B3LYP/6‐31G* level.  相似文献   

4.
Ab initio geometry optimization was carried out on 10 selected conformations of maltose and two 2‐methoxytetrahydropyran conformations using the density functional denoted B3LYP combined with two basis sets. The 6‐31G* and 6‐311++G** basis sets make up the B3LYP/6‐31G* and B3LYP/6‐311++G** procedures. Internal coordinates were fully relaxed, and structures were gradient optimized at both levels of theory. Ten conformations were studied at the B3LYP/6‐31G* level, and five of these were continued with full gradient optimization at the B3LYP/6‐311++G** level of theory. The details of the ab initio optimized geometries are presented here, with particular attention given to the positions of the atoms around the anomeric center and the effect of the particular anomer and hydrogen bonding pattern on the maltose ring structures and relative conformational energies. The size and complexity of the hydrogen‐bonding network prevented a rigorous search of conformational space by ab initio calculations. However, using empirical force fields, low‐energy conformers of maltose were found that were subsequently gradient optimized at the two ab initio levels of theory. Three classes of conformations were studied, as defined by the clockwise or counterclockwise direction of the hydroxyl groups, or a flipped conformer in which the ψ‐dihedral is rotated by ∼180°. Different combinations of ω side‐chain rotations gave energy differences of more than 6 kcal/mol above the lowest energy structure found. The lowest energy structures bear remarkably close resemblance to the neutron and X‐ray diffraction crystal structures. © 2000 John Wiley & Sons, Inc. * J Comput Chem 21: 1204–1219, 2000  相似文献   

5.
Adiabatic and vertical ionization potentials (IPs) of nine conformers of dopamine in the gas phase are determined using density functional theory (DFT) B3LYP, B3P86, B3PW91 methods and high level ab initio HF method with 6-311++G** basis set, respectively. And the nine stable cationic states have been found in the ionization process of dopamine. Vertical ionization potentials of nine conformers of dopamine are calculated using the older outer-valence Green’s function (OVGF) calculations at 6-311++G** basis set. Vibrational frequencies and infrared spectrum intensities of G1b and G1b+ at B3LYP/6-311++G** level are discussed.  相似文献   

6.
In gas phase, the hydrations of pentafulvenone to generate three types of cyclopentadienyl carboxylic acids are studied theoretically at the MP2/6-311+G**//B3LYP/6-311+G** level. A water molecule attacking the C=O double bond of pentafulvenone can yield cyclopentadienyl carboxylic acids via the formation of fulvenediols, and attacking the C=C double bond of pentafulvenone can directly yield cyclopentadienyl carboxylic acid. The barriers of rate-determining transition states are 42.2 and 30.4 kcal mol−1, respectively. The barriers of rate-determining transition states for two water molecules system are 20.2 and 19.6 kcal mol−1, respectively. The products can isomerize to each other. In aqueous solvent, the hydrations of pentafulvenone are investigated using PCM-UAHF model at the MP2 (PCM)/6-311+G**// B3LYP (PCM)/6-311+G** and MP2 (PCM)/6-311+G**// B3LYP/6-311+G** levels. The barriers of all rate-determining transition states are decreased. The added water molecule acts as catalyst in both gas phase and aqueous solvent. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The structural stability and internal rotations in cyclopropanecarboxylic acid and cyclopropanecarboxamide were investigated by the DFT-B3LYP and the ab initio MP2 calculations using 6-311G** and 6-311+G** basis sets. The computations were extended to the MP4//MP2/6-311G** and CCSD(T)//MP2/6-311G** single-point calculations. From the calculations the molecules were predicted to exist predominantly in the cis (C=O group eclipses the cyclopropane ring) with a cis-trans barrier of about 4-6kcal/mol. The OCOH torsional barrier in the acid was estimated to be about 12-13kcal/mol while the corresponding OCNH torsional barrier in the amide was calculated to be about 20kcal/mol. The equilibrium constant k for the cis<-->trans interconversion in cyclopropanecarboxylic acid was calculated to be 0.1729 at 298.15K that corresponds to an equilibrium mixture of about 85% cis and 15% trans. The vibrational frequencies were computed at the DFT-B3LYP level. Normal coordinate calculations were carried out and potential energy distributions were calculated for the low energy cis conformer of the molecules. Complete vibrational assignments were made on the basis of normal coordinate calculations and comparison with experimental data of the molecules.  相似文献   

8.
The conformational stability and the C–O and O–H internal rotations in oxiranemethanol were investigated at the DFT-B3LYP/6-311G**, MP2/6-311G** and MP4(SDQ)/6-311G** levels of theory. Three minima were predicted in the CCOH potential energy scans of the molecule to have relative energies of about 2 kcal/mol or less and all were calculated to have real frequencies upon full optimization of structural parameters at the DFT and the MP2 levels of calculations. The Cg1 (H bond inner) conformation was predicted to be the lowest energy conformation for oxiranemethanol in excellent agreement with an earlier microwave study. The equilibrium mixture was calculated from Gibb's free-energy changes to be about 79% Cg1, 17% G1g and 3% Gg1 at the B3LYP/6-311G** level and about 87% Cg1, 11% G1g and 2% Gg1 at the MP2/6-311G** level for oxiranemethanol at 298.15 K. No conclusive evidence was obtained for the presence of high-energy form in the liquid phase of oxiranemethanol. The vibrational frequencies of oxiranemethanol in its three stable forms were computed at the B3LYP level and complete vibrational assignments were made for the lowest energy Cg1 form on basis of calculated and experimental data of the molecule.  相似文献   

9.
DFT法研究3-羟基丙烯醛的双键旋转异构反应机理   总被引:2,自引:0,他引:2  
利用密度泛函理论(DFT)分别在B3LYP/6-31G**和B3LYP/6-311++G**的计算水平上优化了基态3-羟基丙烯醛分子在双键旋转异构反应过程中的平衡态以及过渡态的几何构型,分析了反应过程中键参数的变化,计算了该反应的内禀反应坐标(IRC),发现在重排反应途径上存在一个四元环骨架的中间体.通过振动分析对平衡态和过渡态进行了确认,并得到了零点能.计算结果表明,基态3-羟基丙烯醛分子的双键旋转异构反应经过两步完成,第一步反应位垒稍高,第二步反应位垒较低,存在着发生重排反应的可能性.  相似文献   

10.
A full structural assignment of the conformers of gaseous tyrosine is presented. A total of 1296 unique trial structures were generated by allowing for all combinations of internal single-bond rotamers and optimized at the B3LYP6-311G* level of theory and then subjected to further optimization at the B3LYP6-311++G** level. A total of 76 conformers are found and their dipole moments, rotational constants, and harmonic frequencies are determined. Accurate relative energies are given at the MP26-311G(2df,p)B3LYP6-311++G** level of theory. Characteristic H-bonding types are classified and listed for all the conformers. The four most stable conformers display an intramolecular H bond, COOH...NH(2), and an additional H-bonding interaction between the amino group and pi electron of the aromatic ring. The results further confirm that the global minimum conformations of the aromatic amino acids have the same H-bonding type. Combined with statistical mechanics principles, conformational distributions at various temperatures are computed and the temperatures with which the theoretical results match that of experiments are indicated.  相似文献   

11.
Systematic and extensive conformational searches of aspartic acid in gas phase and in solution have been performed. For the gaseous aspartic acid, a total of 1296 trial canonical structures and 216 trial zwitterionic structures were generated by allowing for all combinations of internal single-bond rotamers. All the trial structures were optimized at the B3LYP/6-311G* level and then subjected to further optimization at the B3LYP/6-311++G** level. A total of 139 canonical conformers were found, but no stable zwitterionic structure was found. The rotational constants, dipole moments, zero-point vibrational energies, harmonic frequencies, and vertical ionization energies of the canonical conformers were determined. Single-point energies were also calculated at the MP2/6-311++G** and CCSD/6-311++G** levels. The equilibrium distributions of the gaseous conformers at various temperatures were calculated. The proton affinity and gas phase basicity were calculated and the results are in excellent agreement with the experiments. The conformations in the solution were studied with different solvation models. The 216 trial zwitterionic structures were first optimized at the B3LYP/6-311G* level using the Onsager self-consistent reaction field model (SCRF) and then optimized at the B3LYP/6-311++G** level using the conductorlike polarized continuum model (CPCM) SCRF theory. A total of 22 zwitterions conformers were found. The gaseous canonical conformers were combined with the CPCM model and optimized at the B3LYP/6-311++G** level. The solvated zwitterionic and canonical structures were further examined by the discrete/SCRF model with one and two water molecules. The incremental solvation of the canonical and zwitterionic structures with up to six water molecules in gas phase was systematically examined. The studies show that combining aspartic acid with at least six water molecules in the gas phase or two water molecules and a SCRF solution model is required to provide qualitatively correct results in the solution.  相似文献   

12.
The title compound of 3-p-methylphenyl-4-amino-1, 2, 4-triazole-5-thione was synthesized and characterized by elemental analysis, IR, electronic spectra, and X-ray single crystal diffraction. Quantum chemical calculations of the structure, natural bond orbital, and thermodynamic functions of the title compound were performed by using B3LYP/6-311G** and HF-6-311G** methods. Both the methods can well simulate the molecular structure. Vibrational frequencies were predicted, assigned and compared with the experimental values, and B3LYP/6-311G** method is superior to HF/6-311G** method to predict the vibrational frequencies. Electronic absorption spectra calculated by B3LYP/6-311G** method have some red shifts compared with the experimental ones and natural bond orbitals analyses indicate that the two absorption bands are mainly derived from the contribution of n → π* and π → π* transitions. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between C 0 p,m , S 0 m , H 0 m , and temperatures.  相似文献   

13.
B3LYP/6-311++G** and MP2/6-311++G** calculations were used to analyze the interaction between hypochlorous acid (HOCl) and formyl chloride (HCOCl). The results showed that there were four equilibrium geometries (S1, S2, S3, and S4) optimized at B3LYP/6-311++G** level, and all the equilibrium geometries were confirmed to be in stable states by analytical frequency calculations. Complexes S1 and S3 use the 5H atom of HOCl as proton donor and the terminal 1O atom of HCOCl as acceptor to form red shift hydrogen bond systems. However, the blue-shifted hydrogen bond (2C-3H···6O) coexists with 4Cl···5O interaction in structures S2. As for S4, it uses the 7Cl atom of HOCl as proton donor and the terminal 1O atom of HCOCl as acceptor to form red shift halogen bond system. Interaction energies between monomers in the four complexes corrected with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) lie in the range from −5.05 to −14.76 kJ·mol−1 at MP2/6-311++G** level. The natural bond orbital (NBO) and atoms in molecules (AIM) theories have also been applied to explain the structures and the properties of the complexes.  相似文献   

14.
用密度泛函(DFT)方法,在B3LYP/6-31G**水平上对2-溴丙酸气相消除反应机理进行了研究.计算表明,反应主要是通过半极化五元环结构过渡态进行的,羧基上的氢原子协助溴原子离去,羧基氧原子帮助稳定过渡态.在B3LYP/6-311++G(3df,3pd)水平上对B3LYP/6-31G**优化的几何构型进行了单点能计算,计算所得反应的速度控制步骤的活化能为189.461 kJ•mol-1,偏离实验值((180.3±3.4) kJ•mol-1)5.08%.  相似文献   

15.
Quantum chemical calculations by the density functional theory method at the B3LYP/6-311++G** level have shown that 5-nitro-5-methyl-1,2,3,4-tetramethoxycarbonylcyclopentadiene (1) and 5-nitro-2-methyl- 1,3,4,5-tetramethoxycarbonylcyclopentadiene (2) undergo interconversion by consecutive 1,5-sigmatropic shifts via the formation of an unstable isomer, 5-nitro-1-methyl-2,3,4,5- tetramethoxycarbonylcyclopentadiene (3), rather than through the NMR-detected 1,3-shift of the nitro group over the cyclopentadiene ring perimeter. According to calculations in the gas phase, isomer 3 is by ΔE ZPE of 3.6 kcal/mol less stable than isomer 1, while the activation barrier of the stepwise 1 → 2 process is 24.5 kcal/mol, which agrees well with NMR data (ΔG25C, chlorobenzene, 26.5 kcal/mol).  相似文献   

16.
The conformational stability and the three rotor internal rotations in 3-fluoro-1-propanol were investigated by the DFT-B3LYP/6-311+G** and the ab initio MP2/6-311+G** levels of theory. The calculated potential energy curves of the molecule at both levels of theory were consistent with complex conformational equilibria of about 12 minima, all of which were predicted to have real frequencies at both the B3LYP and the MP2 levels. The lowest energy minimum in the potential curves of 3-fluoro-1-propanol was predicted to correspond to the Gauche-gauche-trans (Ggt) conformer in excellent agreement with microwave and electron diffraction results. The equilibrium constants for the conformational interconversion of the molecule were calculated and found to correspond to an equilibrium mixture of about 33% Ggt, 14% Ggg1 and 13% Gg1g and about 43% Ggt, 12% Ggg1 and 10% Gg1g distribution by the B3LYP/6-311+G** and the MP2/6-311+G** calculations, respectively, at 298.15K. The vibrational frequencies of each molecule in its three stable forms were computed at B3LYP level and complete vibrational assignments were made based on normal coordinate calculations and comparison with experimental data of the molecule.  相似文献   

17.
Density functional theory (DFT) method has been employed to study the geometric and electronic structures of a series of four-membered ring compounds at the B3LYP/6-311G** and the B3P86/6-311G** levels. In the isodesmic reactions designed for the computation of heats of formation (HOFs), 3,3-dimethyl-oxetane, azetidine, and cyclobutane were chosen as reference compounds. The HOFs for N(3) substituted derivations are larger than those of oxetane compounds with --ONO2 and/or --NF2 substituent groups. The HOFs for oxetane with --ONO2 and/or --NF2 substituent groups are negative, while the HOFs for N3 substituted derivations are positive. For azetidine compounds, the substituent groups within the azetidine ring affect the HOFs, which increase as the difluoroamino group being replaced by the nitro group. The magnitudes of intramolecular group interactions were predicted through the disproportionation energies. The strain energy (SE) for the title compounds has been calculated using homodesmotic reactions. For azetidine compounds, the NF2 group connecting N atom in the ring decrease the SE of title compounds. Thermal stability were evaluated via bond dissociation energies (BDE) at the UB3LYP/6-311G** level. For the oxetane compounds, the O--NO2 bond is easier to break than that of the ring C--C bond. For the azetidine and cyclobutane compounds, the homolyses of C--NX2 and/or N--NX2 (X = O, F) bonds are primary step for bond dissociation. Detonation properties of the title compounds were evaluated by using the Kamlet-Jacobs equation based on the calculated densities and HOFs. It is found that 1,1-dinitro-3,3-bis(difluoroamino)-cyclobutane, with predicted density of ca. 1.9 g/cm(3), detonation velocity (D) over 9 km/s, and detonation pressure (P) of 41 GPa that are lager than those of TNAZ, is expected to be a novel candidate of high energy density materials (HEDMs). The detonation data of nitro-BDFAA and TNCB are also close to the requirements for HEDMs.  相似文献   

18.
Studies based on ab initio optimized geometries (at B3LYP/6-311+G** and MP2/6-311+G** levels) and on experimental structures retrieved from the Cambridge Structural Database (CSD) reveal that the nucleobases constituting DNA and RNA differ significantly in their aromatic character, as shown by the geometry-based index of aromaticity HOMA that ranges from 0.466 for thymine to 0.917 for adenine, based on B3LYP/6-311+G** calculations, and 0.495-0.926, respectively, if based on the MP2/6-311+G** level. Aromaticity of the bases decreases markedly with an increase of the number of double-bond C=X (X = N, O) substituents at the rings. H-bonds involving C=O groups in Watson-Crick pairs cause an increase of the aromatic character of the rings.  相似文献   

19.
Raman and FTIR, spectra of nitrobenzene, nb, and its isotopomers, nb-15N, nb-13C6 and nb-d5, were obtained and the fundamental vibrational modes assigned with the aid of a B3LYP/6-311+G** calculation, without the need for scaling of the force constants. The changes in vibrational coupling between the nitro and benzene groups upon certain isotopic substitutions are well modelled by the calculation, which is able to reproduce the isotopic shifts in frequencies for the nitro vibrations, as well as changes in IR intensities.  相似文献   

20.
Ab initio calculations of the structural, energetic, vibrational, and magnetic characteristics of the lowest-lying structures for isolated molecules and ions of light-metal tetrahydroborates (Li, Na, Be, Mg, and Al) have been performed by the perturbation theory (MP2), quadratic configuration interaction (QCISD(T)), coupled cluster (CCSD(T)), and density functional theory (B3LYP) methods using the 6-31G*, 6-31G**, 6-311+G**, and 6-311++G** basis sets. The trends in the behavior of the structural parameters, the energies of different decomposition pathways, barriers to internal rotation of BH4 groups, normal mode frequencies, magnetic shielding constants, and spin density distribution (in radicals) have been analyzed in various related series of these compounds. The results obtained by ab initio methods and at the DFT level are compared. The economical approximation B3LYP/6-311++G**//B3LYP/6-311+G** adequately reproduces the results obtained at the higher level of theory CCSD(T)/6-311++G*s*//MP2/6-31G* even though it requires considerably shorter CPU times and smaller amounts of memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号