首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A novel method based on high‐performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry was developed for simultaneous determination of the 11 major active components including ten flavonoids and one phenolic acid in Cirsium setosum. Separation was performed on a reversed‐phase C18 column with gradient elution of methanol and 0.1‰ acetic acid (v/v). The identification and quantification of the analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple‐reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Full validation of the assay was carried out including linearity, precision, accuracy, stability, limits of detection and quantification. The results demonstrated that the method developed was reliable, rapid, and specific. The 25 batches of C. setosum samples from different sources were first determined using the developed method and the total contents of 11 analytes ranged from 1717.460 to 23028.258 μg/g. Among them, the content of linarin was highest, and its mean value was 7340.967 μg/g. Principal component analysis and hierarchical clustering analysis were performed to differentiate and classify the samples, which is helpful for comprehensive evaluation of the quality of C. setosum.  相似文献   

4.
A simple and simultaneous reverse phase high-performance liquid chromatographic method was developed for the quantification of aripiprazole (ARI) and two preservatives, namely, methyl paraben and propyl paraben in ARI oral solution. The method was developed on ACE C18 (4.6?×?250?mm, 5?µm) column using gradient elution of 0.1% v/v trifluoroacetic acid in water and acetonitrile as mobile phase components. Flow rate of 1.0?mL/min and 30°C column temperature were used for the method at quantification wavelength of 254?nm. The developed method was validated in accordance with International Conference on Harmonization guideline for various parameters. Forced degradation study was conducted in acid, base, peroxide, heat, and light stress conditions. ARI was found to degrade in oxidation, acid hydrolysis, and heat while it was stable under the remaining conditions. Specificity of the method was verified using Photo Diode Array (PDA) detector by evaluating purity of peaks from degradation samples. Major degradation impurities formed during stress study were identified using liquid chromatography–mass spectrometry method. The present method was useful for determining the content of all the three main analytes present in the oral solution without interference from degradation impurities. The method was robust under the deliberately modified conditions.  相似文献   

5.
A sensitive, selective and rapid liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the simultaneous determination of bupropion (BUP) and its major active metabolite hydroxybupropion (HBUP) in human plasma. Separation of both the analytes and venlafaxine as internal standard (IS) from 50 μL human plasma was carried out by solid‐phase extraction. The chromatographic separation of the analytes was achieved on a Zorbax Eclipse XDB C18 (150 × 4.6 mm, 5 µm) analytical column using isocratic mobile phase consisting of 20 mm ammonium acetate–methanol (10:90, v/v), with a resolution factor of 3.5. The method was validated over a wide dynamic concentration range of 0.1–350 ng/mL for BUP and 0.1–600 ng/mL for HBUP. The matrix effect was assessed by post‐column infusion and the mean process efficiency was 96.08 and 94.40% for BUP and HBUP, respectively. The method was successfully applied to a bioequivalence study of 150 mg BUP (test and reference) extended release tablet formulation in 12 healthy Indian male subjects under fed conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
高效液相色谱-串联质谱法分离鉴定绿原酸及其相关杂质   总被引:6,自引:0,他引:6  
田晨煦  徐小平  廖丽云  张洁  刘静  周莎 《色谱》2007,25(4):496-500
建立了高效液相色谱-串联质谱法(HPLC-MS/MS)分离和鉴定绿原酸及其相关杂质的方法。采用C18色谱柱(5 μm,4.6 mm×150 mm),乙腈-水(含0.1%甲酸)(体积比为8∶92)为流动相,经HPLC-MS/MS和HPLC-二极管阵列检测器在线检测,对工业绿原酸中的奎尼酸、咖啡酸、绿原酸同分异构体等8个相关杂质的结构进行了鉴定。  相似文献   

7.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

8.
A sensitive and accurate HPLC‐MS/MS method was developed for the simultaneous determination of dextromethorphan, dextrorphan and chlorphenamine in human plasma. Three analytes were extracted from plasma by liquid–liquid extraction using ethyl acetate and separated on a Kromasil 60‐5CN column (3 µm, 2.1 × 150 mm) with mobile phase of acetonitrile–water (containing 0.1% formic acid; 50:50, v/v) at a flow rate of 0.2 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. The calibration curve was linear over the range of 0.01–5 ng/mL for dextromethorphan, 0.02–5 ng/mL for dextrorphan and 0.025–20 ng/mL for chlorphenamine. The lower limits of quantification for dextromethorphan, dextrorphan and chlorphenamine were 0.01, 0.02 and 0.025 ng/mL, respectively. The intra‐ and inter‐day precisions were within 11% and accuracies were in the range of 92.9–102.5%. All analytes were proved to be stable during sample storage, preparation and analytic procedures. This method was first applied to the pharmacokinetic study in healthy Chinese volunteers after a single oral dose of the formulation containing dextromethorphan hydrobromide (18 mg) and chlorpheniramine malaeate (8 mg). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
许蔚  张晓燕  吴斌  殷耀  杨雯筌  沈崇钰  丁涛  陈惠兰 《色谱》2012,30(10):1089-1092
建立了高效液相色谱-串联质谱测定蜂蜜中阿莫西林残留的方法。样品用磷酸氢二钾溶液提取,经固相萃取柱进行净化提取后,以C18柱为分离柱,甲醇和0.1%(v/v)甲酸水溶液为流动相,用串联质谱仪检测,选择1个母离子和2个子离子进行选择反应监测,选择信号最强的子离子进行定量测定。该方法采用外标法定量,在2.0~100.0 μg/L范围内,阿莫西林的峰面积与其质量浓度呈良好的线性关系(r2>0.99),方法的检出限和定量限分别为2.0 μg/kg和5.0 μg/kg,回收率范围为74.2%~81.7%,日内精密度范围为2.8%~7.8%,日间精密度范围为9.1%~11.3%。该方法简便快捷,可以用于蜂蜜中阿莫西林残留量的测定。  相似文献   

10.
A rapid high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous measurement of venlafaxine and O‐desmethylvenlafaxine in human plasma using fluoxetine as an internal standard. In the liquid–liquid extraction method, compounds and internal standard were extracted from plasma using methyl tertiary butyl ether as an extraction solvent. The HPLC separation of the analytes was performed on a Zorbax SB‐C18, 50 × 4.6 mm, 5 µm column, using a isocratic elution program using a mobile phase consisting of HPLC‐grade methanol: 5 mm ammonium acetate (80:20 v/v) at a flow‐rate of 1.0 mL/min with a total runtime of 3.0 min. The proposed method has been validated with a linear range of 4–400 ng/mL for venlafaxine and 5–500 ng/mL for O‐desmethyl venlafaxine. The method was applied for a bio‐equivalence study of 75 mg tablets formulation in 32 Indian male healthy subjects under fasting conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Hu W  Xu Y  Liu F  Liu A  Guo Q 《Biomedical chromatography : BMC》2008,22(10):1108-1114
A sensitive, specific and rapid high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was described and validated for the quantification of ambroxol in human plasma using enalaprilat as the internal standard (IS). Chromatographic separation was performed on a Lichrospher CN column with a mobile phase of methanol and water (containing 0.1% formic acid) (70:30, v/v). The total run time was 5.0 min for each sample. The analytes was detected by mass spectrometry with electrospray ionization source in positive selected reaction monitoring mode. The precursor-fragment ion reaction for ambroxol was m/z 378.9 --> 263.8, and for IS was m/z 349.0 --> 205.9. The linearity was established over the concentration range of 1.56-400.00 ng/mL. The inter-day and the intra-day precisions were all within 10%. A simple protein precipitation with methanol was adopted for sample preparation. The extraction recoveries of ambroxol and IS were higher than 90.80%. The validated method was successfully applied in pharmacokinetic study after oral administration of 90 mg ambroxol to 24 healthy volunteers.  相似文献   

12.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for simultaneous determination of urapidil and aripiprazole in human plasma. A simple liquid–liquid extraction with ethyl acetate was used for the sample preparation. Chromatographic separation was achieved on a Phenomenex C18 (4.6 × 50 mm, 5 µm) column with 0.1% formic acid–acetonitrile (10:90, v/v) as the mobile phase with flow rate of 0.6 mL/min. The quantitation of the target compounds was determined in a positive ion multiple reaction monitoring mode. Calibration plots were linear over the range of 2.0–2503.95 ng/mL for urapidil and 1.0–500.19 ng/mL for aripiprazole. The lower limit of quantitation for urapidil and aripiprazole was 2.0 and 1.0 ng/mL, respectively. Mean recovery was in the range of 69.94–75.62% for both analytes and internal standards. Intra‐day and inter‐day precisions of the assay at three concentrations were 2.56–5.89% with accuracy of 92.31–97.83% for urapidil, and 3.14–6.84% with accuracy of 91.38–94.42% for aripiprazole. The method was successfully applied to human pharmacokinetic study of urapidil and aripiprazole in healthy human male volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
裘亚  秦峰  闻宏亮  赵敬丹  刘浩  杨美成 《色谱》2015,33(12):1314-1319
建立了在线二维液相色谱-四极杆飞行时间质谱检测头孢噻吩钠杂质谱的方法,有效地解决了流动相中含不挥发性磷酸盐的色谱系统不适合用于液相色谱-质谱快速鉴定杂质的难题。一维高效液相色谱(HPLC)以Symmetry C18为色谱柱,以磷酸盐缓冲液(pH 2.5)和乙腈梯度洗脱;二维以ACQUITY UPLC BEH C18为色谱柱,以0.1%(v/v)甲酸水溶液和0.1%(v/v)甲酸乙腈溶液梯度洗脱。以HLB C18为捕集柱,用0.1%(v/v)甲酸水溶液进行捕集和脱盐,采用正离子模式采集数据。对头孢噻吩钠中6个杂质进行了结构鉴定,对其来源进行了分析,并进一步确证了《中国药典》2010年版对头孢噻吩钠杂质A认定有误。采用本方法可以快速、简便、灵敏地对头孢噻吩钠杂质谱进行检测。  相似文献   

14.
Amoxicillin (AMO) degrades in plasma at room temperature and readily undergoes hydrolysis by the plasma amidase. In this paper, a novel, rapid and sensitive LC‐MS/MS method operated in segmental and multiple reaction monitoring has been developed for the simultaneous determination of amoxicillin and ambroxol in human plasma. The degradation of amoxicillin in plasma was well prevented by immediate addition of 20 μL glacial acetic acid to 200 μL aliquot of freshly collected plasma samples before storage at ?80°C. The sensitivity of the method was improved with segmental monitoring of the analytes, and lower limits of quantitation of 0.5 ng/mL for ambroxol and 5 ng/mL for amoxicillin were obtained. The sensitivity of our method was five times better than those of the existing methods. Furthermore, the mass response saturation problem with amoxicillin was avoided by diluting the deproteinized plasma samples with water before injection into the LC‐MS/MS system. The method was successfully employed in a pharmacokinetic study of the compound amoxicillin and ambroxol hydrochloride tablets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and specific liquid chromatographic–tandem mass spectrometric (LC–MS–MS) method for most of those penicillins and cephalosporins for which EU maximum residue limits (MRL) were set in Council regulation (EEC) 2377/90 was developed and validated in bovine muscle, kidney and milk. The analytes were extracted with acetonitrile/water and cleaned-up by a single reversed-phase solid-phase extraction step. Highest sensitivity for the analytes was obtained when amoxicillin, ampicillin, cephalexin, cephapirin, desacetylcephapirin, cephalonium, cefquinome and cefazolin were measured in the positive electrospray ionisation mode (ESI (+)) and cefoperazone, benzylpenicillin, phenoxymethylpenicillin, oxacillin, cloxacillin, dicloxacillin and nafcillin in the negative electrospray ionisation mode (ESI (−)). Chromatography was performed with a formic acid/methanol gradient. Collision-induced dissociation (CID) with argon was used for fragmentation of the pseudomolecular ions to achieve the required specificity. Possible adverse matrix effects on the electrospray ionisation process caused by co-eluting matrix components were investigated. The method was validated closely to the new EU guidelines and applied to positively screened samples from official food control allowing the identification and quantification of the residual β-lactams.  相似文献   

16.
Afatinib (AFT) is a new tyrosine kinase inhibitor approved for the treatment of nonsmall cell lung cancer. In the present study, a simple, specific, rapid and sensitive liquid chromatography tandem mass‐spectrometric method for the quantification of AFT in human plasma, was developed and validated. Chromatographic separation of the analytes was accomplished on a reversed‐phase Luna®‐PFP 100 Å column (50 × 2.0 mm; 3.0 μm) maintained at ambient temperature. Isocratic elution was carried out using acetonitrile–water (40:60, v/v) containing 10 mm ammonium formate buffer (pH 4.5) adjusted with formic acid at a flow rate of 0.4 mL min?1. The analytes were monitored by electrospray ionization in positive ion multiple reaction monitoring mode. The method yields a linear calibration plot (r2 = 0.9997) from a quantification range of 0.5–500 ng mL?1 with the lower limit of quantification and lower limit of detection of 1.29 and 0.42 ng mL?1, respectively. The intra‐ and inter‐day precision and accuracy were estimated and found to be in the ranges of 1.53–4.11% for precision and ?2.80–0.38% for accuracy. Finally, quantification of afatinib in a metabolic stability study in rat liver microsomes was achieved through the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed for the determination of a selective Na(+)/H(+) exchanger inhibitor 4-cyano(benzo[b]thiophene-2-carbonyl)guanidine (KR-33028) in rat plasma. KR-33028 and the internal standard, linezolid, were extracted from rat plasma with ethyl acetate at neutral pH. The analytes were separated on an XBridge C(18) column with a mixture of methanol-0.1% formic acid (35:65, v/v) as mobile phase and detected using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curve was linear (r = 0.9998) over the concentration range of 2.0-1000 ng/mL. The coefficients of variation of intra- and inter-assay were 1.3-6.8% and the relative error was 0.8-5.0%. The recoveries of KR-33028 and linezolid were 70.5 and 84.6%, respectively. The lower limit of quantification for KR-33028 was 2.0 ng/mL using 50 microL plasma sample. This method was successfully applied to the pharmacokinetic study of KR-33028 in rats.  相似文献   

18.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

19.
The potential for using testosterone and nandrolone esters in racehorses to boost the biological concentrations of these steroids and enhance athletic performance is very compelling and should be seriously considered in formulating regulatory policies for doping control. In order to regulate the use of these esters in racehorses, a sensitive and validated method is needed. In this paper, we report such a method for simultaneous separation, screening, quantification and confirmation of 16 testosterone and nandrolone esters in equine plasma by ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Analytes were extracted from equine plasma by liquid-liquid extraction using a mixture of methyl tert-butyl ether and ethyl acetate (50:50, v/v) and separated on a sub-2 micron C(18) column. Detection of analytes was achieved on a triple-quadrupole mass spectrometer by positive electrospray ionization mode with selected reaction monitoring (SRM). Mobile phase comprised 2 mM ammonium formate and methanol. Deuterium-labeled testosterone enanthate and testosterone undecanoate were used as dual-internal standards for quantification. Limits of detection (LOD) and quantification (LOQ) were 25-100 pg/mL and 100-200 pg/mL, respectively. The linear dynamic range of quantification was 100-10,000 pg/mL. For confirmation of the presence of these analytes in equine plasma, matching of the retention time with mass spectrometric ion ratios from MS/MS product ions was used. The limit of confirmation (LOC) was 100-500 pg/mL. The method is sensitive, robust, selective and reliably reproducible.  相似文献   

20.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号