首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚电解质PSS/PDDA分子沉积膜表面性能研究   总被引:3,自引:0,他引:3  
PSS PDDAMD膜紫外 可见吸光度与层数呈线性关系 ,其延长线基本为零证实了是一单分子层层状沉积过程 ;利用接触角测量仪跟踪MD膜沉积过程 ,其结果表明 ,层数较少时PSS PDDAMD膜表面润湿性呈“奇 偶”性规律变化 ,层数较多时规律性不明显 ,这说明聚电解质MD膜结构缺陷随着层数的增加有增大趋势 ;通过对原子力显微镜 (AFM)测定结果的分析 ,进一步证实了多层PSS PDDAMD膜存在结构缺陷 .  相似文献   

2.
The colloid stability of supramolecular assemblies composed of the synthetic anionic lipid sodium dihexadecyl phosphate (DHP) on cationic poly(diallyldimethylammonium chloride) (PDDA) supported on polystyrene sulfate (PSS) microspheres was evaluated via turbidimetry kinetics, dynamic light scattering for particle sizing, zeta-potential analysis, and determination of DHP adsorption on PDDA-covered particles. At 0.05 g/L PDDA and 5 x 10(9) PSS particles/mL, PDDA did not induce significant particle flocculation and a vast majority of PDDA covered single particles were present in the dispersion so that this was the condition chosen for determining DHP concentration (C) effects on particle size and zeta-potentials. At 0.8 mM DHP, charge neutralization, maximal size, and visible precipitation indicated extensive flocculation and minimal colloid stability for the DHP/PDDA/PSS assembly. At 0.05 g L(-1) PDDA, isotherms of high affinity for DHP adsorption on PDDA-covered particles presented a plateau at a limiting adsorption of 135 x 10(19) DHP molecules adsorbed per square meter PSS which was well above bilayer deposition on a smooth particle surface. The polyelectrolyte layer on hydrophobic particles was swelled and fluffy yielding ca. 6 +/- 1.5 nm hydrodynamic thickness. Maximal and massive adsorption of DHP lipid onto this layer produced polydisperse DHP/PDDA/PSS colloidal particles with low colloid stability and which, at best, remained aggregated as doublets over a range of large lipid concentrations so that it was not possible to evaluate the mean total thickness for the deposited film. The assembly anionic lipid/cationic PDDA layer/polymeric particle was relatively stable as particle doublets only well above charge neutralization of the polyelectrolyte by the anionic lipid, at relatively large lipid concentrations (above 1 mM DHP) with charge neutralization leading to extensive particle aggregation.  相似文献   

3.
Superhydrophobic films mainly based on poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) polyelectrolyte multilayer have been deposited onto cleaned glass substrate by a layer-by-layer dip coating method. 3 bilayers of the PAH and PAA was directly coated onto the substrate as an underlying layer for subsequent coating. Desired surface roughness on the polyelectrolyte bilayers was created by etching the bilayers in hydrochloric acid solution so as to create the open pore having suitable size at the surface. Then, nanoparticles such as SiO2 and TiO2 of various sizes were deposited onto the etched polyelectrolyte bilayers. Finally, the surfaces were further modified with semifluorinated silane followed by cross-linking at 180 °C for 2 h to obtain desirable surface morphological features. The effect of etching time and addition of nanoparticles on surface morphology was investigated using an atomic force microscope (AFM). Wetting ability of the prepared film was determined by measuring water droplet contact angle using a goniometer. Adhesion between the superhydrophobic films and the substrate was evaluated by using a standard tape test method (D3359). The adhesion was improved by reducing the organic content in the films.  相似文献   

4.
A new fiber-optic pH sensor is demonstrated by coating negatively charged polyelectrolyte complex (PEC) nanoparticles, made of sodium carboxymethyl cellulose and poly(diallyldimethylammonium chloride) (PDDA), and positively charged PDDA on the surface of a thin-core fiber modal interferometer (TCFMI) with a layer-by-layer (LbL) electrostatic self-assembly method. The fabricated TCFMI pH sensor has different transmission dip wavelengths under different pH values and shows high sensitivities of 0.6 nm/pH unit and −0.85 nm/pH unit for acidic and alkaline solutions, respectively, and short response time of 30–50 s. The LbL electrostatic self-assembly process of a PEC/PDDA multilayer is traced by quartz crystal microbalance and shows a fast thickness growth. Atomic force microscopy shows the root mean square (RMS) surface roughness of electrostatic self-assembly nanocoating of polyelectrolyte complex/polyelectrolyte is much higher than that of polyelectrolyte/polyelectrolyte due to the larger size of PEC colloidal nanoparticles. The enhanced RMS surface roughness and thickness of the nanocoating can shorten the response time and raise the sensitivity of the TCFMI pH sensor, respectively. In addition, the TCFMI pH sensor has highly reversible performance and good durability.  相似文献   

5.
1-Stearoyl-2-oleoyl phosphatidylserine (SOPS)/cholesterol bilayers, supported on a polycation/alkylthiol layer pair on a gold surface, were investigated by surface plasmon resonance (SPR) and fluorescence recovery after photobleaching. The substrate was formed by electrostatic adsorbance of a hydrated poly(diallyldimethylammonium chloride) (PDDA) layer on the negatively charged surface of a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) on gold. Lipid membranes with different SOPS/cholesterol compositions were deposited on the PDDA/MUA layer pair by vesicle fusion. When the cholesterol content was below 20%, single bilayers were deposited. Fluorescence recovery after the bleaching experiments revealed that the SOPS/cholesterol bilayers were mobile at room temperature; lateral diffusion coefficients of a fluorescence probe were approximately 1x10(-9) cm(2)/s. The kinetics of the addition of the ion-channel-forming peptide gramicidin to the supported bilayers was detected by SPR. Copyright 2000 Academic Press.  相似文献   

6.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

7.
An unusually stable and regeneratable nanosized CdS-based catalyst for visible-light-induced photocatalysis was developed by combining the protection effect of polyelectrolyte and the spatial confinement of mesopores. This catalyst was fabricated by coating a layer of poly(diallyl dimethylammonium) chloride (PDDA) around nanosized CdS pre-incorporated hexagonal mesoporous silica (HMS) sphere, and named as CdS/HMS–PDDA. In contrast to the catalyst without PDDA-coating (CdS/HMS), which loses its activity at 3rd run, CdS/HMS–PDDA can completely degrade the organic pollutants for over 22 runs. Noticeably, CdS/HMS–PDDA can be facilely regenerated by H2S treatment, and the catalyst shows the same capability as the fresh one even after 6 regenerations (accumulatively 151 runs). No cadmium leakage is detected from CdS/HMS–PDDA during the photocatalytic processes, promising its environmental compatibility. A series of characterization experiments reveal that the polyelectrolyte layer effectively prevents the cadmium species from leakage, and further delays the photocorrosion of CdS via a back reaction occurred by use of photogenerated electrons remaining in CdS, endowing the catalyst with high stability and regeneratability.  相似文献   

8.
《Electroanalysis》2004,16(23):1992-1998
A carbon nanotubes‐based amperometric cholesterol biosensor has been fabricated through layer‐by‐layer (LBL) deposition of a cationic polyelectrolyte (PDDA, poly(diallyldimethylammonium chloride)) and cholesterol oxidase (ChOx) on multi‐walled carbon nanotubes (MWNTs)‐modified gold electrode, followed by electrochemical generation of a nonconducting poly(o‐phenylenediamine) (PPD) film as the protective coating. Electrochemical impedance measurements have shown that PDDA/ChOx multilayer film could be formed uniformly on MWNTs‐modified gold electrode. Due to the strong electrocatalytic properties of MWNTs toward H2O2 and the low permeability of PPD film for electroacitve species, such as ascorbic acid, uric acid and acetaminophen, the biosensor has shown high sensitivity and good anti‐interferent ability in the detection of cholesterol. The effect of the pH value of the detection solution on the response of the biosensor was also investigated. A linear range up to 6.0 mM has been observed for the biosensor with a detection limit of 0.2 mM. The apparent Michaelis‐Menten constant and the maximum response current density were calculated to be 7.17 mM and 7.32 μA cm?2, respectively.  相似文献   

9.
A weak polyelectrolyte coating, carboxylated poly(oligo(ethylene glycol)methacrylate-co-2-hydroxyethylmethacrylate), was prepared via surface initiated polymerization (SIP) from initiators immobilized to gold surface through the Au-S bonds. When dry thickness increased up to 75 nm, this polyelectrolyte coating was pulled off the Au substrate by simply exposing to phosphate buffer saline (PBS, pH = 7.4, [Na(+)] = 150 mM). This covalent bond breaking (CBB) behavior was monitored in situ using a quartz crystal microbalance (QCM) and CBB was associated with the swelling of the anchored polyelectrolyte chains.  相似文献   

10.
Multilayer films of glucose oxidase (GOx) and poly(dimethyl diallyl ammonium chloride) (PDDA) prepared by layer-by-layer deposition were studied using scanning electrochemical microscopy (SECM). Aminated glass slides were coated with five bilayers of poly(styrene sulfonate) (PSS) and PDDA and used as substrates onto which GOx/PDDA multilayers were deposited. UV-Vis experiments confirmed multilayer growth, scanning force microscopic images provided morphological information about the films. SECM current-distance curves enabled the determination of kinetic information about GOx in GOx/PDDA multilayers as a function of layer number, film termination, inert covering layers, and enzyme substrate concentration after fitting to numerical models. The results indicate that only the topmost layers contributed significantly to the conversion. An odd-even pattern was observed for PDDA-terminated films or GOx-terminated films that correlated with morphological changes.  相似文献   

11.
Herein, fabrication of hollow fibers made of polyelectrolyte multilayers is reported. Silica submicrometer-scale fibers were fabricated by electrospinning and layer by layer deposition of polyelectrolytes were performed to coat silica fibers with polyelectrolyte multilayers, which were prepared by consecutive deposition of poly(ethyleneimine) and poly(styrene sulfonate sodium salt)/sodium dodecyl sulfate onto the surface of the silica fibers. In order to obtain hollow fibers, the core removal was carried out by introducing the core-shell fibers to a hydrofluoric acid solution. The hollow fibers were stable in hydrofluoric acid solution and displayed pH-dependent structural changes. SEM microscopy indicated the formation of the glass fibers and the fibers coated with polyelectrolyte multilayers (Silica—polyelectrolyte multilayers (PEM) fibers). The diameter of the core-shell fibers was increased after layer-by-layer coating. ATR-FTIR was performed for characterization of the glass fibers before and after layer-by-layer coating as well as after selective core removal. IR spectrum of the Silica-PEM fibers indicates C-H stretching modes of saturated hydrocarbons, confirming multilayers formation. Core removal was also confirmed by IR spectroscopy as Si-O-Si band disappears for the IR spectrum of the fibers after core-removal.  相似文献   

12.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

13.
ZSM-5 crystals and glass plates tethered with trimethylpropylammonium iodide and sodium butyrate, respectively, (denoted as Z+, Z-, G+, and G-, respectively) were prepared. Treatment of G- with Z+ suspended in ethanol results in monolayer assembly of Z+ on G- (G-/Z+) with high surface coverage. The zeolite crystals have a strong tendency to closely pack and align with the b-axis normal to the glass plate, despite large positive zeta potentials. Subsequent treatment of G-/Z+ with Z- leads to second-layer assembly of Z- on G-/Z+ (G-/Z+/Z-), but with rather poor coverage. Sequential treatment of G+ with poly(sodium 4-styrenesulfonate)(Na+PSS-), poly(diallyldimethylammonium chloride) (PDDA+Cl-), and Na+PSS- followed by Z+ yields glass plates assembled with monolayers of Z+ with very high surface coverage through the composite polyelectrolyte linkers (G+/PSS-/PDDA+/PSS-/Z+). The zeolite crystals also have a strong tendency to closely pack and align with the b-axis perpendicular to the substrate plane. The binding strength between the zeolite crystals and glass plates is much higher in G+/PSS-/PDDA+/PSS-/Z+ than in G-/Z+. Repetition of the sequential PSS-/PDDA+/PSS-/Z+ layering for five cycles yields glass plates assembled with pentalayers of ZSM-5 crystals [G+/(PSS-/PDDA+/PSS-/Z+)(5)]. The observed degrees of coverage and alignment of zeolite crystals in each layer were very high up to the third layers despite the nonuniformity of the sizes and shapes of the zeolite crystals used in this study. This report thus demonstrates the feasibility of layer-by-layer assembly of micrometer-sized zeolite crystals on glass through electrostatic interaction between surface-bound, full-fledged ionic centers, especially by use of polyelectrolyes as the linkers.  相似文献   

14.
Broad-band superhydrophobic antireflective (AR) coatings in near infrared (NIR) region were readily fabricated on silicon or quartz substrates by a layer-by-layer (LbL) assembly technique. First, a porous poly(diallyldimethylammonium chloride) (PDDA)/SiO2 nanoparticle multilayer coating with AR property was prepared by LbL deposition of PDDA and 200 nm SiO2 nanoparticles. PDDA was then alternately assembled with sodium silicate on the PDDA/SiO2 nanoparticle coating to prepare a two-level hierarchical surface. Superhydrophobic AR coating with a water contact angle of 154 degrees was finally obtained after chemical vapor deposition of a layer of fluoroalkylsilane on the hierarchical surface. Quartz substrate with the as-fabricated superhydrophobic AR coating has a maximal transmittance above 98% of incidence light in the NIR region, which is increased by five percent compared with bare quartz substrate. Simultaneously, the superhydrophobic property endows the AR coating with water-repellent ability. Such superhydrophobic AR coatings can effectively avoid the disturbance of water vapor on their AR property and are expected to be applicable under humid environments.  相似文献   

15.
杜鑫  刘湘梅  郑奕  贺军辉 《化学学报》2009,67(5):435-441
采用聚苯乙烯磺酸钠(PSS)和聚二烯丙基二甲基氯化铵(PDDA)两种聚电解质, 通过静电层层自组装成功地将MCM-41介孔二氧化硅纳米粒子包覆到聚苯乙烯(PS)微球表面. 实验结果表明, 当以尺寸为1.4 μm的PS微球为核时, 包覆了两个聚电解质双层(PDDA/PSS)2的PS(PDDA/PSS)2(PDDA/MCM-41)复合结构微粒与包覆了一个聚电解质双层(PDDA/PSS)的PS(PDDA/PSS)(PDDA/MCM-41)复合结构微粒相比, 复合结构微粒之间的交联程度降低, 但是MCM-41纳米粒子在聚苯乙烯微球表面的包覆都比较松散, 且产物中存在大量杂质. 而当以尺寸为5 μm的聚苯乙烯微球为核时, MCM-41纳米粒子紧密地包覆在聚苯乙烯微球表面, 复合结构微粒之间只有少量桥连物, 且产物中杂质很少.  相似文献   

16.
叶芸  蒋亚东 《高分子学报》2009,(11):1091-1095
利用静电自组装方法在石英玻璃表面交替沉积聚二烯丙基二甲基氯化铵(PDDA)和聚偏氟乙烯(PVDF)超薄膜,制得PDDA/PVDF铁电复合超薄膜.通过石英晶体微天平实时监测超薄膜的沉积,研究了超薄膜的表面形貌、结构及电性能.结果表明,自组装每层PVDF超薄膜的厚度为7.5 nm;PDDA/PVDF铁电复合超薄膜的表面平整、均匀,其中C1s的光电子能谱与极化处理后充负电荷的PVDF铁电聚合物一致,但F1s由于溶解再组装过程而降低了0.3 eV;静电自组装材料纳米级的薄膜厚度和聚合物的络合作用导致了铁电复合超薄膜的非晶结构和高的表面电阻率.  相似文献   

17.
Analyte–wall interaction is a significant problem in capillary electrophoresis (CE) as it may compromise separation efficiencies and migration time repeatability. In CE, self-assembled polyelectrolyte multilayer films of Polybrene (PB) and dextran sulfate (DS) or poly(vinylsulfonic acid) (PVS) have been used to coat the capillary inner wall and thereby prevent analyte adsorption. In this study, atomic force microscopy (AFM) was employed to investigate the layer thickness and surface morphology of monolayer (PB), bilayer, (PB-DS and PB-PVS), and trilayer (PB-DS-PB and PB-PVS-PB) coatings on glass surfaces. AFM nanoshaving experiments providing height distributions demonstrated that the coating procedures led to average layer thicknesses between 1 nm (PB) and 5 nm (PB-DS-PB), suggesting the individual polyelectrolytes adhere flat on the silica surface. Investigation of the surface morphology of the different coatings by AFM revealed that the PB coating does not completely cover the silica surface, whereas full coverage was observed for the trilayer coatings. The DS-containing coatings appeared on average 1 nm thicker than the corresponding PVS-containing coatings, which could be attributed to the molecular structure of the anionic polymers applied. Upon exposure to the basic protein cytochrome c, AFM measurements showed an increase of the layer thickness for bare (3.1 nm) and PB-DS-coated (4.6 nm) silica, indicating substantial protein adsorption. In contrast, a very small or no increase of the layer thickness was observed for the PB and PB-DS-PB coatings, demonstrating their effectiveness against protein adsorption. The AFM results are consistent with earlier obtained CE data obtained for proteins using the same polyelectrolyte coatings.  相似文献   

18.
“Simple” silica films of 50 nm and 100 nm thickness are sputter‐coated onto ITO substrates and shown to be structured with in‐planed features of ca. 15 nm and pores <5 nm (based on GISAXS). In electrochemical measurements membrane pore effects are observed. The oxidation current for Fe(CN)64? in aqueous KNO3 strongly depends on the electrolyte concentration. Poly‐cationic poly(diallyl‐dimethylammonium) (PDDA) cannot enter these pores, but is adsorbed onto the outer surface of the silica film. During gold electrodeposition, PDDA causes growth of “discs”. Gold deposits adhere well and a comparison of glucose electrooxidation activity reveals significant improvements.  相似文献   

19.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

20.
Differential scanning calorimetry (DSC) and cryomicroscopy were employed to investigate the glass transition and enthalpy relaxation behaviors of ethylene glycol (EG) and its aqueous solution (50% EG) with different crystallization percent. Isothermal crystallization method was used in devitrification region to get different crystallinity after samples quenched below glass transition temperature. The DSC thermograms upon warming showed that the pure EG has a single glass transition, while the 50% EG solution has two if the solution crystallized partially. It is believed that the lower temperature transition represents the glass transition of bulk amorphous phase of EG aqueous solution glass state, while the higher one is related to ice inclusions, whose mobility is restricted by ice crystal. Cryomicroscopic observation indicated that the EG crystal has regular shape while the ice crystal in 50% EG aqueous solution glass matrix has no regular surface. Isothermal annealing experiments at temperatures lower than Tg were also conducted on these amorphous samples in DSC, and the results showed that both the two amorphous phases presented in 50% EG experience enthalpy relaxation. The relaxation process of restricted amorphous phase is more sensitive to annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号