首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preparation process and upconversion luminescence of the Er(3+)-doped glass ceramics containing Ba(2)LaF(7) nanocrystals were investigated. The formation of Ba(2)LaF(7) nanocrystals in the glass ceramics was confirmed by X-ray diffraction. Er(3+)-doped glass ceramics containing Ba(2)LaF(7) nanocrystals exhibited highly efficient upconversion luminescence in comparison with glasses. With the increase of heat treatment temperature the upconversion luminescence intensity increased gradually. The composition of glasses was also found to have significant influence on the crystallization process of glass ceramics. The mixture of Ba(2)LaF(7) and La(2)O(3) nanocrystals and the mixture of La(2)F(3) and La(2)O(3) nanocrystals in the glass ceramics could be obtained by controlling different compositions of glasses. The upconversion luminescence intensity also varied significantly with different nanocrystals in the glass ceramics.  相似文献   

2.
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices.  相似文献   

3.
A general approach to fine-tuning the upconversion emission colors, based upon a single host source of NaYF4 nanoparticles doped with Yb3+, Tm3+, and Er3+, is presented. The emission intensity balance can be precisely controlled using different host-activator systems and dopant concentrations. The approach allows access to a wide range of luminescence emission from visible to near-infrared by single-wavelength excitation.  相似文献   

4.
Green upconversion nanocrystals for DNA detection   总被引:5,自引:0,他引:5  
By combining magnetic-field-assisted bioseparation and concentration technology with magnetite nanoparticles, novel green upconversion (UC) fluorescence nanocrystals (NaYF4:Yb3+/Er3+) have been applied to the sensitive detection of DNA.  相似文献   

5.
合成了一种新型共掺杂Er3 和Yb3 的氟氧化物 (ZnF2 SiO2 基质 )材料 ,研究了Er3 在这种基质材料中的吸收和在 980nm激发下的上转换发光 ,并对比了同等激发条件下Er3 离子在ZBLAN玻璃和这种氟氧化物中的上转换发光特性。实验发现两种基质中Er3 离子吸收峰位置基本相同 ,但吸收强度明显不同。氟氧化物中Er3 离子的上转换发光强度要低于ZBLAN基质中Er3 离子的上转换发光强度 ,不同的是Er3 离子在氟氧化物基质中红光发射强度要强于绿光强度。分析了两种基质中Er3 的上转换发光机制 ,氟氧化物基质中Er3 离子红绿光发射均为双光子过程 ,ZBLAN基质中Er3 离子绿光发射为双光子过程 ,而红光发射为双光子和三光子混合过程。  相似文献   

6.
First heterometal-organic single source precursors for NaYF(4) nanomaterials as a host matrix for up-conversion emission are reported. These novel heterobimetallic derivatives NaY(TFA)(4)(diglyme) (1), [Na(triglyme)(2)][Y(2)(TFA)(7)(THF)(2)] (2) and Na(2)Y(TFA)(5)(tetraglyme) (3) (TFA = trifluoroacetate), which were fully characterized by elemental analysis, FT-IR and (1)H NMR spectroscopy, TG-DTA data as well as single crystal X-ray structures, are advantageous in terms of being anhydrous and having lower decomposition temperatures in comparison to the homometallic precursor Y(TFA)(3)(H(2)O)(3). In addition, they also contain chelating glyme ligands, which act as capping reagents during decomposition to control the NaYF(4) particle size and render them monodisperse in organic solvents. On decomposition in 1-octadecene, the molecular derivatives 1 and 3 are converted, in the absence of any surfactant or capping reagent, to cubic NaYF(4) nanocrystals at significantly lower temperatures (below 250 °C). At higher temperature, a mixture of the cubic and hexagonal phases was obtained, the relative ratio of the two phases depending on the reaction temperature. A pure hexagonal phase, which is many folds more efficient for UC emission than the cubic phase, was obtained by calcining nanocrystals of mixed phase at 400 °C. In order to co-dope this host matrix with up-converting lanthanide cations, analogous complexes NaLn(TFA)(4)(diglyme) [Ln = Er (4), Tm (5), Yb (6)] and Na(2)Ln(TFA)(5)(tetraglyme) [Ln = Er (7), Yb (8)] were also prepared and characterized. The decomposition in 1-octadecene of suitable combinations and appropriate molar ratios of these yttrium, ytterbium and erbium/thulium derivatives gave cubic and/or hexagonal NaYF(4): Yb(3+), Er(3+)/Tm(3+) nanocrystals (NCs) capped by diglyme or tetraglyme ligands, which were characterized by IR, TG-DTA data, EDX analysis and TEM studies. Surface modification of these NCs by ligand exchange reactions with poly acrylic acid (PAA) and polyethyleneglycol (PEG) diacid 600 was also carried out to render them water soluble. The THF solutions of suitable combinations of the diglyme derivatives were also used to elaborate the thin films of NaYF(4):Yb(3+), Er(3+)/Tm(3+) on a glass or Si wafer substrate by spin coating. The multicolour up-conversion fluorescence was successfully realized in the Yb(3+)/Er(3+) (green/red) and Yb(3+)/Tm(3+) (blue/violet) co-doped NaYF(4) nanoparticles and thin films, which demonstrates that they are promising UC nanophosphors of immense practical interest. The up-conversion excitation pathways for the Er(3+)/Yb(3+) and Tm(3+)/Yb(3+) co-doped materials are discussed.  相似文献   

7.
Liang X  Wang X  Zhuang J  Peng Q  Li Y 《Inorganic chemistry》2007,46(15):6050-6055
In this article, branched NaYF(4) nanocrystals have been successfully synthesized via a simple hydrothermal method. On the basis of the analysis of HRTEM and TEM images, the growth modes of the branched structure and further branching behavior have been proposed. The up- and down-conversion luminescence of branched NaYF(4):Er(3+)/Yb(3+) and NaYF(4):Eu(3+) have been characterized. Multiarmed NaYF(4) phosphors can be introduced into polystyrene to form composite luminescent polymers because of its special geometrical shape. In conclusion, the luminescent branched particles should be of wide potential application as building blocks in the future nanoscience and nanotechnology.  相似文献   

8.
Radiative properties of Er3+-doped tertiary bismuth glass has been analyzed by the Judd-Ofelt theory. NIR to visible upconversion in the Er3+-doped glass has been reported. The mechanism for the upconversion is explained on the basis of quadratic dependence on excitation power and on the energy-matching scheme. Energy transfer is noted as the dominant process including the long-lived 4I11/2 level as the intermediate state for the green and red upconversion emissions. The effect of temperature on the fluorescence intensity of the two bands due to 2H11/2-->4I15/2 and 4S3/2-->4I15/2 transitions as well as on the transitions due to Stark components of the 4S3/2 level have been monitored and it is concluded that their intensity ratio may serve as better temperature sensing device.  相似文献   

9.
Er~(3 )/Yb~(3 )共掺杂AlF_3基氟化物玻璃材料的频率上转换   总被引:2,自引:0,他引:2  
Er3 /Yb3 共掺杂的AlF3基氟化物玻璃材料ABCY的制备及其上转换荧光性质。样品的组分为 40AlF3 2 0BaF2 2 0CaF2 (2 0 2x 2y)YF3 xEr2 O3 yYb2 O3。在 95 0nm连续LD激发下 ,观察到该材料很强的绿色上转换发光 ,研究了该体系的上转换机理 ,认为Yb3 和Er3 之间的APTE效应是最主要的上转换途径。解释了红、绿色上转换荧光强度比值增大的现象 ,指出了可能的交叉弛豫过程。用公式y =a(x -x0 ) n 对上转换荧光强度与LD工作电流的关系进行拟合 ,得到的结果与理论值很好地一致。  相似文献   

10.
采用溶剂热法制备了不同Mn~(2+)掺杂量的NaBiF_4∶Yb/Er/Mn上转换发光体系,研究了其形貌、晶相、上转换发光性能随Mn~(2+)掺杂量的变化,并探讨了该体系的能量传递机理.实验结果表明,Mn~(2+)的掺杂不会引起NaBiF_4从六方相转变为立方相,但会增大其尺寸;同时在NaBiF_4体系中,Mn~(2+)可以与Er~(3+)进行能量传递,使红光发射得到增强,并且随着Mn~(2+)浓度的增加,红/绿光发射强度比也会随之增大.此外,还考察了NaBiF_4∶Yb/Er/Mn体系的变温发射光谱,发现当温度升高时,红/绿光强度比以及520 nm绿光与540 nm绿光发射强度比都总体上呈增大趋势.  相似文献   

11.
980 nm脉冲激光激发下,首次通过高温固相法制备Yb(10%):Er(1%):Tm(1%):LiTaO3(摩尔分数)多晶粉并实现室温上转换白光.X射线粉末衍射测试结果表明,Yb:Er:Tm:LiTaO3中的掺杂离子并没有改变晶格结构,以取代的方式存在于钽酸锂晶格中.结合功率曲线测试结果和上转换机制研究发现,产生上转换蓝光的Tm3+离子1G4态的布居主要来自双光子同时吸收过程.而单光子上转换输出的红光,则由Tm3+和Er3+离子之间的交叉弛豫过程产生,即3F2/3(Tm3+)+4I15/2(Er3+)→3H6(Tm3+)+4I9/2(Er3+).上转换绿光来源于Yb/Er离子对的二次能量传递.  相似文献   

12.
A new strategy of synthesizing hexagonal upconversion NaYF(4) at low temperature (down to 130 °C) based on Ti(4+) doping-induced cubic-to-hexagonal phase transition in a liquid-solid-solution reaction system is offered.  相似文献   

13.
Monodisperse Er(3+):NaGdF(4)@Ho(3+):NaGdF(4)@NaGdF(4) active-core/active-shell/inert-shell nanocrystals, which can extend the near-infrared wavelength excitable range for upconversion (UC) emissions, were successfully fabricated for the first time. Importantly, doping of Er(3+) and Ho(3+) into the core and shell respectively suppresses adverse energy transfers between them, resulting in intense UC emissions for both Er(3+) and Ho(3+) dopants.  相似文献   

14.
沉淀法合成纳米晶上转换发光材料Y_2O_2S:Yb,Er   总被引:2,自引:0,他引:2  
采用沉淀法在不同温度下合成了纳米上转换发光材料Y2O2S∶Yb,Er,运用XRD、TEM和上转换发光光谱对其进行表征。结果表明,使用该法在700℃即能合成纳米上转换发光材料Y2O2S∶Yb,Er,随着合成温度的升高,产物的粒径从60到120nm逐渐增大。上转换发光光谱显示该材料主要有2个发射带,其中红光发射的中心波长位于668nm,绿光发射的中心波长位于525和550nm。此外,对材料的上转换发光过程进行了探讨。  相似文献   

15.
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished visible X-ray scintillation, but shows enhanced red wavelength centered upconversion emission. These nanocrystals have been characterized by TEM, X-ray diffraction, power-dependent upconversion luminescence, and X-ray scintillation spectroscopy. We further demonstrate that lithium ion doping of the [Y(2)O(3); Yb (2%), Er (1%)] nanoscale composition leads to enhanced X-ray and NIR excited emission intensities through the production of nanoparticles that feature slightly enhanced sizes and increased crystallinity.  相似文献   

16.
采用沉淀法制备前驱体,通过不同温度合成了上转换发光材料Y2O2S∶Er3+,Yb3+,运用XRD,SEM和上转换发射光谱对其进行表征。结果表明,所合成的Y2O2S∶Er3+Yb3+属于六方晶系晶体,随着合成温度的升高,产物的粒径不断增大,上转换发射光强度逐渐增加。研究Y2O2S∶Er3+Yb3+的上转换发光过程,红光发射和绿光发射分别源于Er3+离子的4F9/2→4I15/2以及2H11/2→4I15/2,4S3/2→4I15/2能级跃迁。利用群论计算了晶场中Er3+离子的能级分裂数目。  相似文献   

17.
A general and facile approach for tailoring the multicolor output and shapes of lanthanide-ion doped fluoride upconversion nanoparticles (UCNPs) within a given composition is presented. By adjusting the temperature and time in the thermolysis procedure, the color output and shapes of NaYF(4):20%Yb, 2%Er UCNPs can be readily manipulated. The nanoparticles were characterized through the use of transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and upconversion luminescence spectroscopy. It is shown that the relative intensities of green emissions gradually increased with the rise of temperature and prolongation of growth time under excitation of 980 nm, which resulted in multicolor output of NaYF(4):20%Yb, 2%Er UCNPs. Simultaneously, the shapes for UCNPs can also be controlled. TEM images, estimated micro-stress by Williamson-Hall methodology and a series of control experiments and analyses reveal that crystallinity is mainly responsible for the multicolor output of UCNPs. Based on the above method, the tailoring of color output is also successfully realized in Ho(3+) and Tm(3+) ions. It is expected that this method may be used to tune the physical properties of other nanoparticles, and these multicolored UCNPs are promising for applications in multiplexed bioimaging, biodetection, display, other optical technologies, etc.  相似文献   

18.
Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm3+:3H4+Er3+:4I 15/2-->Er3+:4I 9/2+Tm3+:3H6, and for the red upconversion luminescence through the energy transfer process: Tm3+:3F4+Er3+:4I 11/2-->Tm3+:3H6+Er3+:4F 9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of Tm3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation.  相似文献   

19.
Upconverting lanthanide-doped nanocrystals were synthesized via the thermal decomposition of trifluoroacetate precursors in a mixture of oleic acid and octadecene. This method provides highly luminescent nanoparticles through a simple one-pot technique with only one preparatory step. The Er3+, Yb3+ and Tm3+, Yb3+ doped cubic NaYF4 nanocrystals are colloidally stable in nonpolar organic solvents and exhibit green/red and blue upconversion luminescence, respectively, under 977 nm laser excitation with low power densities.  相似文献   

20.
以尿素为沉淀剂,采用低温水热法结合煅烧过程制备出MgAl2O4∶Er^3+,Yb^3+上转换荧光粉,并对样品的结构、微观形貌及上转换发光性能予以表征。结果表明,随尿素加入量的增大,产物主形貌由六角片状结构向纳米棒状转变,经1100℃煅烧可得纯相镁铝尖晶石结构,且Er^3+和Yb^3+能有效进入MgAl2O4晶格并占据Mg^2+位置形成均匀固溶体。在980 nm光激发下,MgAl2O4∶1.0%(n/n)Er^3+,x%(n/n)Yb^3+(x=0~8.0)荧光粉表现出在524、545 nm处绿光以及658 nm处的强红光发射,红绿光强度均在5.0%(n/n)Yb^3+掺杂时达到最大,但红绿光强度比却在7.0%(n/n)Yb^3+掺杂时达到最大值5.2,这归因于Er^3+-Er^3+之间交叉弛豫(CR)在红光发射过程中所起的重要作用。通过控制荧光粉中Yb^3+的掺杂量,能初步实现对于黄绿光色度的有效调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号