首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex species formed in aqueous solutions (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) between the V(III) cation and the ligands 6-methylpicolinic acid (MePic, HL), salicylic acid (H2Sal, H2L) and phthalic acid (H2Phtha, H2L) have been studied by potentiometric and spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf(H) data, taking into account the hydrolytic species and hydrolysis constants of V(III), indicates that under the employed experimental conditions the complexes [VL]2+, [V(OH)L]+, [V(OH)2L], [V(OH)3L], [VL2]+, [VL3] and [V2OL4] form in the vanadium(III)–MePic system. Were observed the complexes [VL]+, [VL2], [V(OH)L2]2− and [VL3]3− in the vanadium(III)–H2Sal system, and the species [VHL]2+, [VL]+, [V(OH)L], [VHL2], [VL2], [V(OH)L2]2−, [V(OH)2L2]3− and [VL3]3− in the vanadium(III)–H2Phtha system. The stability constants of these complexes were determined by potentiometric measurements, and spectrophotometric measurements were made in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

2.
The complex species formed between vanadium(III) and 1,10-phenanthroline (phen), 2,2′-bipyridine (bipy), and 8-hydroxyquinoline (8hq) were studied in aqueous solution by means of electromotive forces measurements, emf(H), at 25 °C with 3.0 mol⋅dm−3 KCl as the ionic medium. The potentiometric data were analyzed using the least-squares computational program LETAGROP, taking into account the hydrolytic vanadium(III) species formed in solution. Analysis of the vanadium(III)–phen system data shows the formation of [VHL]4+, [V(OH)L]2+, [V2OL2]4+ and [V2OL4]4+ complexes. In the vanadium(III)–bipy system the [VHL]4+, [V(OH)L]2+, [V2OL2]4+ and [V2OL4]4+ complexes were observed, and in the vanadium(III)–8hq system the complexes [V(OH)L]+, [V(OH)2L], [VL2]+ and [VL3] were detected.  相似文献   

3.
Ternary complex species formed by the V3+ cation with the picolinic acid (Hpic, HL) and dipicolinic acid (H2dipic, H2L) ligands in aqueous solutions have been studied potentiometrically (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) and by spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf (H) data, taking into account the hydrolytic V(III) species and the binary V3+–picolinic acid and V3+–dipicolinic acid complexes, shows that under the investigated conditions the following ternary complexes are formed: [V(dipic)(pic)], [V(dipic)(pic)(OH)] and [V(dipic)(pic)2]. The stability constants of the ternary complexes were determined by potentiometric measurements whereas the spectrophotometric measurements were done in order to obtain a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

4.
In this work we present results for the speciation of the ternary complexes formed in the aqueous vanadium(III)–dipicolinic acid and the amino acids cysteine (H2cys), histidine (Hhis), aspartic acid (H2asp) and glutamic acid (H2glu) systems (25 °C; 3.0 mol⋅dm−3 KCl as ionic medium), determined by means of potentiometric measurements. The potentiometric data were analyzed with the least-squares program LETAGROP, taking into account the hydrolysis of vanadium(III), the acid-base reactions of the ligands, and the binary complexes formed. Under the experimental conditions (vanadium(III) concentration = 2–3 mmol⋅dm−3 and vanadium(III): dipicolinic acid: amino acid molar ratio 1:1:1, 1:1:2 and 1:2:1), the following species [V(dipic)(H2asp)]+, [V(dipic)(Hasp)], [V(dipic)(asp)], [V(dipic)(asp)(OH)]2−, and [V(dipic)(asp)(OH)2]3− were found in the vanadium(III)–dipicolinic acid–aspartic acid system. In the vanadium(III)–dipicolinic acid–glutamic acid system [V(Hdipic)(H2glu)]2+, [V(dipic)(H2glu)]+, [V(dipic)(Hglu)], [V(dipic)(Hglu)(OH)], and [V(dipic)(Hglu)(OH)2]2− were observed. In the vanadium(III)–dipicolinic acid–cysteine system the complexes [V(dipic)(H2cys)]+, [V(dipic)(Hcys)], [V(dipic)(cys)], and [V(dipic)(cys)(OH)]2− were present. And finally, in the vanadium(III)–dipicolinic acid–histidine system the complexes [V(Hdipic)(Hhis)]2+, [V(dipic) (Hhis)]+[\mathrm{V}(\mathrm{dipic}) (\mathrm{Hhis})]^{+}, [V(dipic)(his)], [V(dipic)(his)(OH)], and [V(dipic)(his)(OH)2]2− were observed. The stability constants of these complexes were determined. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

5.
In this paper we present speciation results for the ternary vanadium(III)–dipicolinic acid (H2dipic) systems with the amino acids glycine (Hgly), proline (Hpro), α-alanine (Hα-ala), and β-alanine (Hβ-ala), obtained by means of electromotive forces measurements emf(H) using 3.0 mol⋅dm−3 KCl as the ionic medium and a temperature of 25 °C. The experimental data were analyzed by means of the computational least-squares program LETAGROP, taking into account hydrolysis of the vanadium(III) cation, the respective stability constants of the binary complexes, and the acid base reactions of the ligands, which were kept fixed during the analysis. In the vanadium(III)–dipicolinic acid–glycine system, formation of the ternary [V(Hdipic)(Hgly)]2+, [V(dipic)(Hgly)]+, [V(dipic)(gly)], [V(dipic)(gly)(OH)] and [V(dipic)(gly)(OH)2]2− was observed; in the case of the vanadium(III)–dipicolinic acid–proline system the ternary complexes [V(Hdipic) (Hpro)]2+, [V(dipic)(Hpro)]+, [V(dipic)(pro)] and [V(dipic)(pro)(OH)] were observed; in the vanadium(III)–picolinic acid–α-alanine were observed [V(Hdipic)(Hα-ala)]2+, [V(dipic) (Hα-ala)]+, [V(dipic)(αala)], [V(dipic)(α-ala)(OH)] and [V(dipic)(α-ala)(OH)2]2−; and in the vanadium(III)–dipicolinic acid–β-ala system the complexes [V(dipic) (Hβ-ala)]+, [V(dipic)(β-ala)], [V(dipic)(β-ala)(OH)] and [V(dipic)(β-ala)(OH)2]2− were observed. Their respective stability constants were determined, and we evaluated values of Δlog 10 K″ in order to understand the relative stability of the ternary complexes compared to the corresponding binary ones. The species distribution diagrams are briefly discussed as a function of pH.  相似文献   

6.
Solution equilibria of the ternary systems Ni(II)–picolinic acid (Hpic) and the amino acids aspartic acid (H2asp), glutamic acid (H2glu), cysteine (H2cys) and histidine (Hhis), where the amino acids are denoted as H i L, have been studied pH-metrically. The formation constants of the resulting mixed ligand complexes have been determined at 25 °C using a ionic strength 1.0 mol·dm?3 NaCl. In the Ni(II)–Hpic–H2asp and Ni(II)–Hpic–H2glu systems, the complexes [Ni(pic)H2L]+, Ni(pic)HL, [Ni(pic)L]? and [Ni(pic)L(OH)]2? were detected. In the Ni(II)–Hpic–H2cys system the complexes [Ni(pic)H2L]+ and [Ni(pic)L]? are present. Additionally, in the Ni(II)–Hpic–Hhis system the species [Ni(Hpic)HL]2+, Ni(pic)L and [Ni(pic)L(OH)]? were identified. The species distribution diagrams as functions of pH are briefly discussed.  相似文献   

7.
Ternary complex formation reactions were studied between vanadium(III), dipicolinic acid and small molecular weight blood serum components: lactic, oxalic, citric and ortophosphoric acids. The electromotive force measurement permitted us to determine the chemical speciation of the complexes formed. In the vanadium(III)–dipicolinic acid–lactic acid system the complexes detected were: V(dipic)(lac), V(dipic)(lac)(OH) and V(dipic)(lac)(OH)22-(\mathrm{OH})_{2}^{2-}. In the vanadium(III)–dipicolinic acid–oxalic acid system the observed complexes were: V(dipic)(ox), V(dipic)(ox)(Hox)2− and V(dipic)(ox)23-(\mathrm{ox})_{2}^{3-}. In the vanadium(III)–dipicolinic acid–citric acid system the complexes V(dipic)(Hcit), V(dipic)(cit)2−, V(dipic)(cit)(OH)3−, V(dipic)(cit)(OH)24-(\mathrm{OH})_{2}^{4-} and V(dipic)(cit)(OH)35-(\mathrm{OH})_{3}^{5-} were detected. Finally in the vanadium(III)–dipicolinic acid–phosphoric acid system the complexes V(dipic)(H2PO4) and V(dipic)(HPO4) were observed. The UV-vis spectra allowed us to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

8.
The complex species formed between vanadium(III)-picolinic acid (HPic) and the amino acids: cysteine (H2Cys), histidine (HHis), aspartic acid (H2Asp) and glutamic acid (H2Glu) were studied in aqueous solution by means of electromotive forces measurements emf(H) at 25 °C and 3.0 mol⋅dm−3 KCl as ionic medium. Data analysis using the least-squares program LETAGROP indicates the formation of ternary complexes, whose stoichiometric coefficients and stability constant were determined. In the vanadium(III)-picolinic acid-cysteine system the model obtained was: [V(Pic)(H2Cys)]2+, [V(Pic)(HCys)]+, V(Pic)(Cys) and [V2O(Pic)(Cys)]+. The vanadium(III)-picolinic acid-histidine system contained the following complexes: [V(Pic)(HHis)]2+, [V(Pic)(His)]+, V(Pic)(His)(OH) and [V(Pic)2(HHis)]+. In the vanadium(III)-picolinic acid-aspartic acid system the model obtained was: V(Pic)(Asp), [V(Pic)(Asp)(OH)] and [V2O(Pic)(Asp)]+ and finally, in the vanadium(III)-picolinic acid-glutamic acid system the complexes: V2O(Pic)2(HGlu)2, V(Pic)(HGlu)2 and V(Pic)2(HGlu) were observed.  相似文献   

9.
In this article, we present the results of the speciation of the binary nickel(II)-oxalic acid (H2L) and nickel(II)-malonic acid (H2L) systems studied by electromotive forces measurements emf (H) using 1.0?mol?dm?3 NaCl as the ionic medium at 25°C. The experimental data were analyzed by a computational least-squares program LETAGROP/FONDO, a version of the LETAGROP program, written to analyze regular formation function and reduced formation functions, taking into account the hydrolysis of the nickel(II) cation and the acid base reactions of the ligands which were kept fixed during the analysis. In the nickel(II)-oxalic acid system the complexes [NiHL]+, [NiL], [Ni(OH)L]?, and [NiL2]2? were observed and for the nickel(II)-malonic acid system the complexes [NiHL]+, [NiL], [Ni(OH)L]?, and [Ni(OH)2L]2? were detected. The stability constants were determined and the species distribution diagrams as a function of pH are briefly discussed.  相似文献   

10.
The structures of two complexes, [Ph3PCH2Ph]+[Bu3SnCl2] and [Ph3AsCH2COPh]+[Ph3SnCl2], have been determined by X-ray diffraction. Both materials are monoclinic, space group P21/c. Unit cell data for [Ph3PCH2Ph]+−[Bu3SnCl2] are a 9.8521(6), b 16.9142(4), c 22.3517(7) Å, β 91.4235(9)°; and for [Ph3AsCH2COPh]+[Ph3SnCl2] a 34.9760(3), b 11.1290(5), c 24.2410(2) Å, β 108.56(2)°, and both consist of the component ionic species. The organotin anions each have trigonal bipyramidal geometry with equatorial organic groups and axial halogens. In the [Ph3SnCl2] anion the two Sn---Cl bond distances are the same (2.58(1) and 2.60(1) Å), but in [Bu3SnCl2], as in [Me3SnCl2], they are substantially different (2.573(7) and 2.689(6) Å). The Sn---C bond distances also vary: [Ph3SnCl2] 2.15(4), 2.16(3) and 2.25(5); [Bu3SnCl2] 2.21(1), 2.20(2) and 2.29(2) Å. Tin-119 Mössbauer data for these and several other similar complexes are also reported.  相似文献   

11.
The chromic acid oxidation of propionaldehyde in the presence of picoIinic acid proceeds much faster than that of propionaldehyde alone. It is shown that picolinic acid is an effective catalyst. The rate law governing this catalysis is rate=k[HCrO4?][PA]-[CH3CH2CHO][H+]2/(a+b[H+]+c[H+]2). A mechanism consistent with the rate law was proposed: picolinic acid reacts with chromic acid to form a cyclic intermediate complex C1, C1 further reacts with a molecule of hydrated aldehyde to give a termolecular complex C2 and a hydrogen ion, C2 then undergoes oxidative decomposition in the next step to give products.  相似文献   

12.
The trivalent ruthenium, rhodium and iridium complexes of dipicolinic acid and its mixed ligand complexes with several nitrogen, oxygen donor molecules, of types: Na[M(dipic)2]·2H2O and [M(dipic)(N-O)]·nH2O (where M = Ru(III), Rh(III) or Ir(III); dipicH2 = dipicolinic acid; NOH represents different nitrogen, oxygen donor molecules, viz., picolinic acid, nicotinic acid, isonicotinic acid, glycine, aminophenol, o- or p-aminobenzoic acid), have been synthesized and characterised on the basis of elemental analyses, electrical conductance, magnetic susceptibility measurements and spectral (electronic and infrared) data. The parent dipicolinic acid complexes are found to have a six-coordinate pseudooctahedral structure, whereas for mixed ligand complexes, a polymeric six-coordinate structure has been assigned. Various ligand field and nephelauxetic parameters have also been evaluated.  相似文献   

13.
The complexation of Cu2+ by N-isopropyl-2-methyl-1,2-propanediamine (L) has been studied by potentiometric and spectrophotometric titration. The dominant complexes formed in this system are [CuL]2+, [CuL2]2+, [Cu2L2(OH)2]2+, and [CuL(OH)2]. The data were thoroughly tested for different models with [CuL(OH)]+, [CuL(OH)]+, [Cu(OH)]+, and [Cu2(OH)2]2+ as additional species. The importance of steric factors is indicated by the d-d* spectra: for [CuL2]2+, (λmax = 499 nm) the absorption maximum is shifted by 50 nm to high energies relative to [Cu(en)2]2+, (λmax = 549 nm), whereas the opposite is true for the 1:1 complexes ([CuL]2+ : λmax = 712 nm,s [Cu(en)]2+ : λmax = 660 nm).  相似文献   

14.
The complex species formed between vanadium(III)?C2,2??-bipyridine (Bipy) and the small blood serum bioligands lactic (HLac), oxalic (H2Ox), citric (H3Cit) and phosphoric (H3PO4) acids were studied in aqueous solution by means of electromotive forces measurements emf(H) at 25?°C and 3.0?mol?dm?3 KCl as the ionic medium. The data were analyzed using the least-squares computational program LETAGROP, taking into account the hydrolytic products of vanadium(III) and the binary complexes formed. Formation of the complexes [V(Bipy)(Lac)]2+, [V(Bipy)(Lac)2]+, [V(OH)2(Bipy)(Lac)] and [V2O(Bipy)2(Lac)2]? were observed in the vanadium(III)?CBipy?CHLac system. Also, the species [V(Bipy)(HOx)]2+, [V(Bipy)(Ox)]+, [V(OH)(Bipy)(Ox)], [V(OH)2(Bipy)(Ox)]? and [V(OH)3(Bipy)(Ox)]2? were found in the vanadium(III)?CBipy?CH2Ox system, the complexes [V(Bipy)(HCit)]+, [V(Bipy)(Cit)], [V(OH)(Bipy)(Cit)]? and [V(OH)2(Bipy)(Cit)]2? were found in the vanadium(III)?CBipy?CH3Cit system, and the species [V(Bipy)(H2PO4)]2+ and [V(Bipy)(HPO4)]+ were detected in the vanadium(III)?CBipy?CH3PO4 system. The stability constants of these complexes were determined.  相似文献   

15.
Precipitation of Al3+ at pH = 10 in excess Li2CO3 leads to an anion exchanging compound, [Al2Li(OH)6]+2CO2−3. This compound exhibits, compared to [Mg3Al(OH)8]+2CO2−3, a higher degree of size selectivity in anion exchange. The structure of the [Al2Li(OH)6]+ layers is gibbsite-like, with a (110) diffraction feature at d = 4.35 Å indicating a pronounced Al3+ ordering. As claimed originally by Serna et al., the structure is [Al2Li(OH)6]+Az1/z rather than [Al2(OH)6]Li+Az1/z, with the Li+ coordinated in the octahedral positions left vacant by Al3+. This emerges from the details of a lithium-leaching process, which proposedly leads to a novel compound, [Al2H(OH)6]+Az1/z.  相似文献   

16.
In this work, the ternary complex formation among copper(II), 6-methylpicolinic acid (H6Mepic) as primary ligand, and the amino acids aspartic acid (H2Asp), glutamic acid (H2Glu) and histidine (HHis) as secondary ligands, were studied in aqueous solution at 25 °C using 1.0 mol·dm?3 KNO3 as the ionic medium. Analysis of the potentiometric data using the least squares computational program LETAGROP indicates formation of the species [Cu(6Mepic)]+, Cu(6Mepic)(OH), [Cu(6Mepic)(OH)2]?, Cu(6Mepic)2 and [Cu(6Mepic)3]? in the binary Cu(II)–H6Mepic system. In the ternary Cu(II)–H6Mepic–H2Asp system the complexes [Cu(6Mepic)(H2Asp)]+, Cu(6Mepic)(HAsp), [Cu(6Mepic)(Asp)]? and [Cu(6Mepic)(Asp)(OH)]2? were observed. In the case of the Cu(II)–H6Mepic–H2Glu system the complexes Cu(6Mepic)(HGlu), [Cu(6Mepic)(Glu)]?, [Cu(6Mepic)(Glu)(OH)]2? and [Cu(6Mepic)(glu)(OH)2]3? were detected. Finally, in the Cu(II)–H6Mepic–HHis system the complexes [Cu(6Mepic)(HHis)]+, Cu(6Mepic)(His) and [Cu(6Mepic)(His)(OH)]? were observed. The species distribution diagrams as a function of pH are briefly discussed.  相似文献   

17.
To survey the noninnocence of bis(arylimino) acenaphthene (BIAN) ligands (L) in complexes with early metals, the homoleptic vanadium complex, [V(L)3] ( 1 ), and its monocation, [V(L)3]PF6 ( 2 ), were synthesized. These complexes were found to have a very rich electronic behavior, whereby 1 displays strong electronic delocalization and 2 can be observed in unprecedented valence tautomeric forms. The oxidation states of the metal and ligand components in these complexes were assigned by using spectroscopic, crystallographic, and magnetic analyses. Complex 1 was identified as [VIV(Lred)(L.)2] (Lred=N,N′‐bis(3,5‐dimethylphenylamido)acenaphthylene; L.=N,N′‐bis(3,5‐dimethylphenylimino)acenaphthenesemiquinonate). Complex 2 was determined to be [VV(Lred)(L.)2]+ at T<150 K and [VIV(L.)3]+ at T>150 K. Cyclic voltammetry experiments reveal six quasi‐reversible processes, thus indicating the potential of this metal–ligand combination in catalysis or materials applications.  相似文献   

18.
In this paper we report the formation of binary and ternary nickel(II) complexes involving dipicolinic acid (H2Dipic) as the primary ligand and some selected amino acids {glycine (HGly), ?-alanine (H?-Ala), ??-alanine (H??-Ala) and proline (HPro)} as secondary ligands. These complexes were studied at 25?°C by means of electromotive force measurements, emf(H), using 1.0?mol?dm?3 NaCl as the ionic medium. The experimental data were analyzed by means of the computational least-squares program LETAGROP, taking into account hydrolysis of the nickel(II) cation and the acid/base reactions of the ligands whose equilibrium constants were kept fixed during the analysis. In the study of the binary nickel(II)?Camino acids systems the species [NiL]+, NiL2 and [NiL3]? were observed, and in the case of the ternary nickel(II)?Cdipicolinic acid?Camino acids systems the complexes Ni(Dipic)HL, [Ni(Dipic)L] ? and [Ni(Dipic)L(OH)]2? were observed. The respective stability constants were determined, and the species distribution diagrams, as a function of pH, are briefly discussed.  相似文献   

19.
In aqueous solution ruthenium trichloride reacted with picolinic acid (Hpic) in the presence of a base to afford [Ru(pic)3]. In solution it shows intense ligand-to-metal charge transfer transitions near 310 and 370 nm, together with a low-intensity absorption near 2000 nm. [Ru(pic)3] is one-electron paramagnetic and shows a rhombic ESR spectrum in 1:1 dimethylsulphoxide-methanol solution at 77 K. The distortions from octahedral symmetry have been calculated by ESR data analysis. The axial distortion is larger than the rhombic one. In acetonitrile solution it shows a reversible ruthenium(III)-ruthenium(II) reduction at −0.09 V vs. SCE and a reversible ruthenium(III)-ruthenium(IV) oxidation at 1.52 V vs. SCE. Chemical or electrochemical reduction of [RuIII(pic)3] gives [RuII(pic)3], which in solution shows intense MLCT transitions near 360, 410 and 490 nm, and is converted back to [Ru(pic)3] by exposure to air. Reaction of [Ru(pic)3] with 8-quinolinol (HQ) in dimethylsulphoxide solution affords [RuQ3]. [Ru(bpy)(pic)2] (bpy = 2,2′-bipyridine) has been prepared by the reaction of Hpic with [Ru(bpy)(acac)2]Cl (acac = acetylacetonate ion) in ethyleneglycol. It is diamagnetic and in solution shows intense MLCT transitions near 370, 410 and 530 nm. In acetonitrile solution it shows a reversible ruthenium(II)-ruthernium(III) oxidation at 0.44 V vs. SCE and a reversible one-electron reduction of bpy at − 1.64V vs. SCE.  相似文献   

20.
2‐Amino‐3‐hydroxypyridinium dioxido(pyridine‐2,6‐dicarboxylato‐κ3O2,N,O6)vanadate(V), (C5H7N2O)[V(C7H3NO4)O2] or [H(amino‐3‐OH‐py)][VO2(dipic)], (I), was prepared by the reaction of VCl3 with dipicolinic acid (dipicH2) and 2‐amino‐3‐hydroxypyridine (amino‐3‐OH‐py) in water. The compound was characterized by elemental analysis, IR spectroscopy and X‐ray structure analysis, and consists of an anionic [VO2(dipic)] complex and an H(amino‐3‐OH‐py)+ counter‐cation. The VV ion is five‐coordinated by one O,N,O′‐tridentate dipic dianionic ligand and by two oxide ligands. Thermal decomposition of (I) in the presence of polyethylene glycol led to the formation of nanoparticles of V2O5. Powder X‐ray diffraction (PXRD) and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the synthesized powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号