首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a novel channel wall coating on a poly(methyl methacrylate) (PMMA) microchip using methylcellulose (MC) as a coating reagent to suppress electroosmotic flow (EOF) following the strong analytes adsorption via hydrophobic interaction with channel walls of PMMA. Our coating was obtained by first rinsing channel walls with MC-containing aqueous solution followed by evaporation. The coating made the hydrophilic channel wall lowering EOF by two orders of magnitude (1.2 x 10(-5)cm(2)V(-1)s(-1)) as well as reducing the hydrophobic adsorption. On the coated channel walls, we successfully separated sodium dodecyl sulfate-protein complexes with high reproducibility and efficiency using dextran as a lower viscosity protein separation medium.  相似文献   

2.
G Azadi  A Tripathi 《Electrophoresis》2012,33(14):2094-2101
Control of EOF in microfluidic devices is essential in applications such as protein/DNA sizing and high‐throughput drug screening. With the growing popularity of poly(methyl methacrylate) (PMMA) as the substrate for polymeric‐based microfludics, it is important to understand the effect of surfactants on EOF in these devices. In this article, we present an extensive investigation exploring changes in EOF rate induced by SDS, polyoxyethylene lauryl ether (Brij35) and CTAB in PMMA microfluidic capillaries. In a standard protein buffer (Tris‐Glycine), PMMA capillaries exhibited a cathodic EOF with measured mobility of 1.54 ± 0.1 (× 10?4 cm2/V.s). In the presence of surfactant below a critical concentration, EOF was independent of surfactant concentration. At high concentrations of surfactants, the electroosmotic mobility was found to linearly increase/decrease as the logarithm of concentration before reaching a constant value. With SDS, the EOF increased by 257% (compared to buffer), while it was decreased by 238% with CTAB. In the case of Brij35, the electroosmotic mobility was reduced by 70%. In a binary surfactant system of SDS/CTAB and SDS/Brij35, addition of oppositely charged CTAB reduced the SDS‐induced EOF more effectively compared to nonionic Brij35. We propose possible mechanisms that explain the observed changes in EOF and zeta potential values. Use of neutral polymer coatings in combination with SDS resulted in 50% reduction in the electroosmotic mobility with 0.1% hydroxypropyl methyl cellulose (HPMC), while including 2% poly (N,N‐dimethylacrylamide) (PDMA) had no effect. These results will potentially contribute to the development of PMMA‐based microfluidic devices.  相似文献   

3.
This paper deals with dynamic coating of the microchannels fabricated on poly(methyl methacrylate) (PMMA) chips and DNA separation by microchip electrophoresis (MCE). After testing a number of polymers, including 2-hydroxyethyl cellulose, hydroxypropylmethyl cellulose, different sizes of poly(ethylene oxide) (PEO), and poly(vinyl pyrrolidone) (PVP), we found that coating of the PMMA microchannels with PEO(Mr = 6.0 x 10(5) g/mol) on the first layer is essential to minimize the interaction of DNA with PMMA surface. To achieve high efficiency, multilayer coating of PMMA chips with PEO, PVP, and PEO containing gold nanoparticles [PEO(GNP)] is important. A 2-(PEO-PVP)-PEO(GNP) PMMA chip, which was repeatedly coated with 1.0% PEO and 5.0% PVP twice, and then coated with 0.75% PEO(GNP) each for 30 min, provided a high efficiency (up to 1.7 x 10(6) plates/m) for the separation of DNA markers V (pBR 322/HaeIII digest) and VI (pBR 328/BgiI digest and pBR 328/HinfI digest) when using 0.75% PEO(GNP). With such a high efficiency, we demonstrated the separation of hsp65 gene fragments of Mycobacterium HaeIII digests by MCE within 90 s. The advantages of this approach to DNA analysis include ease of filling the microchannel with 0.75% PEO(GNP), rapidity, and reproducibility.  相似文献   

4.
The surface properties of microfluidic devices play an important role in their flow behavior. We report here on an effective control of the surface chemistry and performance of polymeric microchips through a bulk modification route during the fabrication process. The new protocol is based on modification of the bulk microchip material by tailored copolymerization of monomers during atmospheric-pressure molding. A judicious addition of a modifier to the primary monomer solution thus imparts attractive properties to the plastic microchip substrate, including significant enhancement and/or modulation of the EOF (with flow velocities comparable to those of glass), a strong pH sensitivity and high stability. Carboxy, sulfo, and amino moieties have thus been introduced (through the incorporation of methylacrylic acid, 2-sulfoethyl-methacrylate and 2-aminoethyl-methacrylate monomers, respectively). A strong increase in the electroosmotic pumping compared to the native poly(methylmethacrylate)(PMMA) microchip (ca. electroosmotic mobility increases from 2.12 to 4.30 x 10(-4) cm(2) V(-1) s(-1)) is observed using a 6% methylacrylate (MAA) modified PMMA microchip. A 3% aminoethyl modified PMMA microchip exhibits a reversal of the electroosmotic mobility (for example, -5.6 x 10(-4) cm(2) V(-1) s(-1) at pH 3.0). The effects of the modifier loading and the pH on the EOF have been investigated for the MAA-modified PMMA chips. The bulk-modified devices exhibit reproducible and stable EOF behavior. The one step fabrication/modification protocol should further facilitate the widespread production of high-performance plastic microchip devices.  相似文献   

5.
The development of rapid and simple wall coating strategies for high-efficiency electrophoretic separation of DNA is of crucial importance for the successful implementation of miniaturized polymeric DNA analysis systems. In this report, we characterize and compare different methods for the chemical modification of poly(methyl methacrylate) (PMMA) surfaces for the application of wall coating polymers. PMMA surfaces coated with 40 mol% diethylacrylamide and 60 mol% dimethylacrylamide are compared to the PMMA surfaces first oxidized and then coated with hydroxypropylmethyl-cellulose or poly(vinyl alcohol) (PVA). PMMA oxidation was accomplished with UV/ozone or an aqueous solution of HNO(3) to yield hydrogen-bond donors for the spontaneous adsorption of the coating polymers. Contact angle measurements of UV/ozone exposed PMMA surfaces indicate increase in hydrophilicity, and polymer coated surfaces show a strong dependence on the coating polymer and the oxidation method. Fast and repeatable electrophoretic separations of a 10-base and 20-base DNA ladder were performed in PMMA micro CE devices. All analyses were completed in less than 10 min, resulting in the number of theoretical plates as high as 583 000 in a 7.7 cm long separation channel. The duration of UV/ozone treatment was found to have a considerable impact on separation performance. The microchips irradiated with UV for 10 min and coated with PVA as well as the microchips treated with HNO(3) and coated with HPMC were found to have the best separation performance. These results demonstrate facile and robust methods for the surface modification of PMMA enabling low-cost single use devices for electrophoretic DNA separations.  相似文献   

6.
In this work, a piece of glass fiber was inserted into the channel of a poly(methyl methacrylate) (PMMA) electrophoresis microchip to enhance the electroosmotic flow (EOF) and the separation efficiency. The EOF value of the glass fiber-containing microchannel at pH 8.2 was determined to be 4.17 x 10(-4)cm2 V(-1)s(-1). The performance of the new microchip was demonstrated by its ability to separate and detect three purines coupled with end-column amperometric detection. In addition, a piece of trypsin-immobilized glass fiber was inserted into the channel of a PMMA microchip to fabricate a core-changeable microfluidic bioreactor that can be regenerated by changing the fiber. The in-channel fiber bioreactor has been coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the digestion and peptide mapping of bovine serum albumin and myoglobin.  相似文献   

7.
A sol-gel method was employed to fabricate a poly(methyl methacrylate) (PMMA) electrophoresis microchip that contains a hydrophilic channel wall. To fabricate such a device, tetraethoxysilane (TEOS) was injected into the PMMA channel and was allowed to diffuse into the surface layer for 24 h. After removing the excess TEOS, the channel was filled with an acidic solution for 3 h. Subsequently, the channel was flushed with water and was pretreated in an oven to obtain a sol-gel-modified PMMA microchip. The water contact angle for the sol-gel-modified PMMA was approximately 27.4 degrees compared with approximately 66.3 degrees for the pure PMMA. In addition, the electro-osmotic flow increased from 2.13x10(-4) cm2 V(-1) s(-1) for the native-PMMA channel to 4.86x10(-4) cm2 V(-1) s(-1) for the modified one. The analytical performance of the sol-gel-modified PMMA microchip was demonstrated for the electrophoretic separation of several purines, coupled with amperometric detection. The separation efficiency of uric acid increased to 74,882.3 m(-1) compared with 14,730.5 m(-1) for native-PMMA microchips. The result of this simple modification is a significant improvement in the performance of PMMA for microchip electrophoresis and microfluidic applications.  相似文献   

8.
Wu H  Huang B  Zare RN 《Lab on a chip》2005,5(12):1393-1398
A thin layer of polydimethylsiloxane (PDMS) prepolymer, which is coated on a glass slide, is transferred onto the embossed area surfaces of a patterned substrate. This coated substrate is brought into contact with a flat plate, and the two structures are permanently bonded to form a sealed fluidic system by thermocuring (60 degrees C for 30 min) the prepolymer. The PDMS exists only at the contact area of the two surfaces with a negligible portion exposed to the microfluidic channel. This method is demonstrated by bonding microfluidic channels of two representative soft materials (PDMS substrate on a PDMS plate), and two representative hard materials (glass substrate on a glass plate). The effects of the adhesive layer on the electroosmotic flow (EOF) in glass channels are calculated and compared with the experimental results of a CE separation. For a channel with a size of approximately 10 to 500 microm, a approximately 200-500 nm thick adhesive layer creates a bond without voids or excess material and has little effect on the EOF rate. The major advantages of this bonding method are its generality and its ease of use.  相似文献   

9.
The control of the EOF direction and magnitude remains one of the more challenging issues for the optimization of separations in CE. In this work, we investigated the possibility to use variously charged polyanions for a fine-tuning of the EOF using polyelectrolyte multilayers. For that purpose, polyanions of poly(acrylamide-co-2-acrylamido-2-methyl-1-propanesulfonate) (PAMAMPS) with different chemical charge rates varying between 3 and 100% were used. These copolymers are statistic hydrophilic copolymers of acrylamide (AM) and 2-acrylamido-2-methyl-1-propanesulfonate (AMPS). The study of the influence of the chemical charge rate (AMPS molar proportion in the copolymer) on the electroosmotic mobility (mu(eo)) of a capillary modified by a polyelectrolyte bilayer (polycation/PAMAMPS) revealed that the fine-tuning of the EOF was possible, at least for cathodic or slightly anodic EOF (micro(eo) from -5 x 10(-5) to +35 x 10(-5) cm(2)V(-1)s(-1)). Electroosmotic mobility values were compared with the free-draining electrophoretic mobilities of the PAMAMPS constituting the last layer of the capillary coating. The stability of the EOF is discussed in detail on the basis of successive determinations of electroosmotic mobility and migration times. The application to the separation of a model peptide mixture demonstrated the interest (and the simplicity) of this approach for optimizing resolution and analysis time. Experimental resolutions were compared to the theoretical ones that we would obtain on a fused-silica capillary having the same EOF as the coated capillary.  相似文献   

10.
As an important phthalate plasticizer, dibutyl phthalate (DBP) was employed to decrease the bonding temperature of poly(methyl methacrylate) (PMMA) microfluidic chips in this work based on the fact that it can lower the glass transition temperature of PMMA. The channel plates of the PMMA microchips were fabricated by the UV-initiated polymerization of prepolymerized methyl methacrylate between a silicon template and a PMMA plate. Prior to bonding, DBP solution in isopropanol was coated on PMMA covers. When isopropanol in the coating was allowed to evaporate in air, DBP was left on the PMMA covers. Subsequently, the DBP-coated covers were bonded to the PMMA channel plates at 90 °C for 10 min under pressure. The channels in the complete microchips had been examined by optical microscope and scanning electron microscope. The results indicated that high quality bonding was achieved below the glass transition temperature of PMMA (∼105 °C). The performance of the PMMA microfluidic chips sealed by plasticizer-assisted bonding has been demonstrated by separating and detecting ionic species by capillary electrophoresis in connection with contactless conductivity detection.  相似文献   

11.
In this study, the dissolution of polysaccharides into an ionic liquid was investigated and applied as a coating onto the capillary walls of a fused‐silica capillary in open‐tubular CEC. The coating was evaluated by examining the chiral separation of two analytes (thiopental, sotalol) with three cellulose derivatives (cellulose acetate, cellulose acetate phthalate, and cellulose acetate butyrate). Baseline separation of thiopental enantiomers was achieved by use of each polysaccharide coating (Rs: 7.0, 8.1, 7.1), while sotalol provided partial resolution (Rs: 0.7, 1.0, 0.9). In addition, reproducibility of the cellulose‐coated capillaries was evaluated by estimating the run‐to‐run and capillary‐to‐capillary RSD values of the EOF. Both stability and reproducibility were very good with RSD values of less than 7%.  相似文献   

12.
微流控芯片技术因具有微量、快速、高效和高通量等特点,已成为分析化学领域中的研究热点之一.在微流控芯片中,最常见的可用作芯片的材料为玻璃、石英和各种塑料.玻璃和石英有很好的电渗性和光学性质,可采用标准的刻蚀工艺加工和用化学方法进行表面改性,但加工成本较高,封接难度较大.  相似文献   

13.
Xu Y  Takai M  Konno T  Ishihara K 《Lab on a chip》2007,7(2):199-206
A type of charged phospholipid polymer biointerface was constructed on a quartz microfluidic chip to control the electroosmotic flow (EOF) and to suppress non-specific protein adsorption through one-step modification. A negatively charged phospholipid copolymer containing 2-methacryloyloxyethyl phosphorylcholine (MPC), n-butyl methacrylate (BMA), potassium 3-methacryloyloxypropyl sulfonate (PMPS) and 3-methacryloxypropyl trimethoxysilane (MPTMSi) moieties (referred to as PMBSSi) was synthesized to introduce such phosphorylcholine segments as well as surface charges onto the silica-based microchannels via chemical bonding. At neutral pH, the homogenous microchannel surface modified with 0.3 wt% PMBSSi in alcoholic solution, retained a significant cathodic EOF ((1.0 +/- 0.1) x 10(-4) cm(2) V(-1) s(-1)) with approximately one-half of the EOF of the unmodified microchannel ((1.9 +/- 0.1) x 10(-4) cm(2) V(-1) s(-1)). Along with another non-charged copolymer (poly(MPC-co-MPTMSi), PMSi), the regulation of the surface charge density can be realized by adjusting the concentration of PMBSSi or PMSi initial solutions for modification. Coincidently, the zeta-potential and the EOF mobility at neutral pH showed a monotonically descending trend with the decrease in the charge densities on the surfaces. This provides a simple but feasible approach to controlling the EOF, especially with regard to satisfying the requisites of miniaturized systems for biological applications requiring neutral buffer conditions. In addition, the EOF in microchannels modified with PMBSSi and PMSi could maintain stability for a long time at neutral pH. In contrast to the EOF in the unmodified microchannel, the EOF in the modified microchannel was only slightly affected by the change in pH (from 1 to 10). Most importantly, although PMBSSi possesses negative charges, the non-specific adsorptions of both anionic and cationic proteins (considering albumin and cytochrome c, respectively, as examples) were effectively suppressed to a level of 0.15 microg cm(-2) and lesser in the case of the 0.3 wt% PMBSSi modification. Consequently, the variation in the EOF mobility resulting from the protein adsorption was also suppressed simultaneously. To facilitate easy EOF control with compatibility to biomolecules delivered in the microfluidic devices, the charged interface described could provide a promising option.  相似文献   

14.
在水溶液中以KMnO4/草酸/硫酸(氧化-还原引发体系)引发甲基丙烯酸甲酯在羟丙基甲基纤维素上的乳液接枝共聚。研究了引发剂组成、反应温度、反应介质的H^ 浓度等对接枝率的影响。结果表明:反应温度和引发剂组成对接枝率有显著影响。接枝纤维素经IR和DTA表征。用接枝纤维素填充聚氯烯(PVC)所得PVC复合材料的拉伸强度提高了20%。  相似文献   

15.
Positively charged starch derivatives were used to modify the inner surface of fused-silica capillaries by addition to running buffer, which were subsequently employed in capillary electrophoresis (CE). Capillaries coated with the cationic starch derivatives were shown to generate a stable, reversed electroosmotic flow (EOF) in the investigated pH range of 3-9. The presented coating procedure was fast, based on a simple rinsing protocol where the polymer created a physically adsorbed, cationic polymer layer. Among the additives studied, a quaternary ammonium starch derivative showed a fast EOF mobility and effectively suppressed the adsorption of proteins. The intra- and inter-day reproducibility of the coating referring to the EOF mobility were satisfactory with relative standard deviation (RSD) of 0.27 and 1.67%, respectively. The coating enabled separation of some protein mixtures including basic proteins within l3 min with efficiencies up to 280,000 plates/m. In addition, this cationic starch derivative possessed a good solubility (about 100mg/mL), and it does not significantly contribute to the background adsorption in the UV region of 190-400 nm.  相似文献   

16.
The aim of the present study was to evaluate the suitability of cellulose-based scaffolds coated with pure sodium silicate gel and sodium silicate gels accumulated with different concentrations of the bisphosphonate pamidronate as scaffolds for attachment, proliferation and differentiation of human fetal osteoblasts (hFOB 1.19). Human osteoblasts were cultured in vitro for a period up to 14 days on different cellulose scaffolds. Unmodified and sodium silicate coated cellulose scaffolds were used as control. Two surface-coated modifications of cellulose were applied. The scaffolds were coated in a modified two-step dip coating process with pure sodium silicate gel and pamidronate enriched sodium silicate gel, respectively. In order to investigate the influence of the pamidronate, concentrations of 0.667 mg Na-pamidronate/ml sodium silicate solution, 0.333 mg Na-pamidronate/ml sodium silicate solution and 3.33 x 10(-3) mg Na-pamidronate/ml sodium silicate solution were used for the coating process. Cell proliferation, vitality and attachment were examined by means of cell counting, WST-1 test, fluorescence and scanning electron microscopy. The relative grade of differentiation of hFOB cells was examined by using quantitative real-time polymerase chain reaction (qRT-PCR) analysis for the gene expression of alkaline phosphatase and osteocalcin. Proliferation and differentiation of human osteoblasts was enhanced by the sodium silicate coatings accumulated with pamidronate compared to pure sodium silicate coatings. There was a reciprocal correlation of vitality with the concentration of pamidronate. The highest vitality was found on surfaces with the lowest pamidronate accumulation. Alkaline phosphatase, an early differentiation marker, was overexpressed after 7 days in cells on all pamidronate-containing surfaces (up to 350% compared to untreated cellulose). Osteocalcin, a late differentiation marker, was overexpressed after 14 days in cells on all coated surfaces (up to 300,000% compared to untreated cellulose). The results indicate that due to the modified coating procedure a homogeneous coating and thus, an enhancement of cell attachment and subsequent cellular functions can be achieved. Low concentrations of pamidronate seem to have a relevant effect on cell proliferation and vitality and, therefore, can be recommended for the improvement of the properties of a biomaterial.  相似文献   

17.
Liu B  Lin D  Xu L  Lei Y  Bo Q  Shou C 《色谱》2012,30(5):440-444
利用亲水性超支化聚酰胺酯通过化学键合的方法对聚甲基丙烯酸甲酯(PMMA)微流控芯片的表面进行改性。对改性后PMMA微流控芯片的表面进行了接触角的测定,利用扫描电子显微镜(SEM)和体视显微镜观察了改性后芯片的表面形貌。结果表明,改性后的PMMA微流控芯片表面形成了一层均匀、致密、连续的亲水性涂层,芯片表面的亲水性得到了明显提高,接触角由未改性时的89.9°降低到29.5°。改性后芯片的电渗流较之改性前明显降低。利用芯片对腺苷和L-赖氨酸两种生物分子进行了分离检测。两种生物分子实现了完全分离,所得到的检测峰峰形尖锐,分离清晰。对腺苷和L-赖氨酸的分离柱效(理论塔板数)分别高达8.44×104 塔板/m和9.82×104 塔板/m,分离度(Rs)达到5.31,均远远高于未改性的芯片。改性后的芯片具有良好的分离时间重现性。本研究为提高PMMA微流控芯片的亲水性和应用范围提供了一种新的有效方法。  相似文献   

18.
The fabrication of microchannels in poly(ethylene terephthalate glycol) (PETG) by laser ablation and the hot imprinting method is described. In addition, hot imprinted microchannels were hydrolyzed to yield additional charged organic functional groups on the imprinted surface. The charged groups are carboxylate moieties that were also used as a means for the further reaction of different chemical species on the surface of the PETG microchannels. The microchannels were characterized by fluorescence mapping and electroosmotic flow (EOF) measurements. Experimental results demonstrated that different fabrication and channel treatment protocols resulted in different EOF rates. Laser-ablated channels had similar EOF rates (5.3+/-0.3 x 10(-4) cm(2)/Vs and 5.6+/-0.4 x 10(-4) cm(2)/Vs) to hydrolyzed imprinted channels (5.1+/-0.4 x 10(-4) cm(2)/Vs), which in turn demonstrated a somewhat higher flow rate than imprinted PETG channels that were not hydrolyzed (3.5+/-0.3 x 10(-4) cm(2)/Vs). Laser-ablated channels that had been chemically modified to yield amines displayed an EOF rate of 3.38+/- 0.1 x 10(-4) cm(2)/Vs and hydrolyzed imprinted channels that had been chemically derivatized to yield amines showed an EOF rate of 2.67+/-0.6 cm(2)/Vs. These data demonstrate that surface-bound carboxylate species can be used as a template for further chemical reactions in addition to changing the EOF mobility within microchannels.  相似文献   

19.
Nagata H  Tabuchi M  Hirano K  Baba Y 《Electrophoresis》2005,26(11):2247-2253
Separation of sodium dodecyl sulfate (SDS)-protein complexes is difficult on plastic microchips due to protein adsorption onto the wall. In this paper, we elucidated the reasons for the difficulties in separating SDS-protein complexes on plastic microchips, and we then demonstrated an effective method for separating proteins using polymethyl methacrylate (PMMA) microchips. Separation difficulties were found to be dependent on adsorption of SDS onto the hydrophobic surface of the channel, by which cathodic electroosmotic flow (EOF; reversed flow) was generated. Our developed method effectively utilized the reversed flow from this cathodic EOF as a driving force for sample proteins using permanently uncoated but dynamic SDS-coated PMMA microchips. High-speed (6 s) separation of proteins and peptides up to 116 kDa was successfully achieved using this system.  相似文献   

20.
Chen G  Li J  Qu S  Chen D  Yang P 《Journal of chromatography. A》2005,1094(1-2):138-147
A novel method for bonding poly(methyl methacrylate) (PMMA) electrophoresis microchips at the temperature below the glass transition temperature of PMMA based on in situ polymerization has been demonstrated. Methyl methacrylate (MMA) containing initiators was allowed to prepolymerize in an 85 degrees C water bath for 8 min and 15 min to produce a bonding solution and a dense molding solution, respectively. The channel plate of the PMMA microchip was fabricated by the UV-initiated polymerization of the molding solution between a nickel template and a PMMA plate at room temperature. Prior to bonding, the blank cover was coated with a thin layer of the bonding solution and was bonded to the channel plate at 95 degrees C for 20 min under the pressure of binder clips. The attractive performance of the PMMA chips bonded by the new approach has been demonstrated by separating and detecting dopamine, catechol, three cations, and three organic acids in connection with end-column amperometric detection and contactless conductivity detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号