首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first dedicated local electrode atom probes (LEAP [a trademark of Imago Scientific Instruments Corporation]) have been built and tested as commercial prototypes. Several key performance parameters have been markedly improved relative to conventional three-dimensional atom probe (3DAP) designs. The Imago LEAP can operate at a sustained data collection rate of 1 million atoms/minute. This is some 600 times faster than the next fastest atom probe and large images can be collected in less than 1 h that otherwise would take many days. The field of view of the Imago LEAP is about 40 times larger than conventional 3DAPs. This makes it possible to analyze regions that are about 100 nm diameter by 100 nm deep containing on the order of 50 to 100 million atoms with this instrument. Several example applications that illustrate the advantages of the LEAP for materials analysis are presented.  相似文献   

2.
The molecular imprinting approach provides a unique opportunity for the creation of three-dimensional cavities with tailored recognition properties. Over the last decade this field has expanded considerably, across a variety of disciplines, leading to novel approaches and many potential applications. Progress in the field of materials science has led to significant breakthroughs and the application of the imprinting approach to novel polymeric formats offers new insights and attractive methods for the preparation of synthetic receptors. In particular, nanomaterials have received considerable attention in the developing field of nanotechnology. With a large number of recent developments in the field of molecular imprinting available, this article is focused on a selection of new systems, in particular the different formats of nanomaterials, such as nanogels, nanofibres, nanowires and nanotubes.  相似文献   

3.
Four complexes of the ligand 1,12-diazaperylene (DAP) have been prepared, [Ru(bpy)n(DAP)(3-n)]2+ where n = 0-2 and [Ru(DAP)3]2+. The [Ru(DAP)3]2+ complex was characterized by X-ray analysis and was found to exhibit the expected propeller-like structure with significant intermolecular pi-stacking interactions. The three Ru(II) complexes showed self-consistent optoelectronic properties with similar ligand-centered pi-pi* absorptions in the range of 333-468 nm and MLCT bands associated with the DAP which increased in intensity and decreased in energy as the number of DAP ligands varied from 1 to 3. Hypochromicity and viscosity changes were observed that were consistent with DAP intercalation into DNA, and binding constants were measured in the range of 1.4-1.6 x 10(6) M(-1) for the mixed ligand complexes. Furthermore, the complex [Ru(bpy)2(DAP)]2+ was found to photocleave plasmid DNA upon irradiation with visible light.  相似文献   

4.
The pyrolysis and combustion of cellulosic substances treated with MAP and DAP have been studied using thermal analysis, flame spread tests and a specifically designed apparatus for smoldering combustion test. The samples used were: cotton string, cotton fabric and pure cellulose powder. Diammonium Phosphate (DAP) and Monoammonium Phosphate (MAP) can reduce the combustion and pyrolysis maximum mass loss temperature, decrease the initial pyrolysis temperature and considerably increase mass residue. Moreover, MAP and DAP reduce the flaming combustion rate of cellulosic materials and completely inhibit smoldering combustion. This study can facilitate a better understanding of the mechanism of pyrolysis and combustion of fire-retarded cellulosic materials.  相似文献   

5.
Atom transfer radical polymerization (ATRP) was initially developed in the mid‐1990s, and with continued refinement and use has led to significant discoveries in new materials. However, metal contamination of the polymer product is an issue that has proven detrimental to widespread industrial application of ATRP. The laboratories of K. Matyjaszewski have made significant progress towards removing this impediment, leading the development of “activators regenerated by electron transfer” ATRP (ARGET ATRP) and electrochemically mediated ATRP (eATRP) technologies. These variants of ATRP allow polymers to be produced with great molecular weight and functionality control but at significantly reduced catalyst concentrations, typically at parts per million levels. This Concept examines these polymerizations in terms of their mechanism and outcomes, and is aimed at giving the reader an overview of recent developments in the field of ATRP.  相似文献   

6.
Nanoscience has outgrown its infancy, and nanotechnology has found important applications in our daily life — with many more to come. Although the central concepts of the nano world, namely the changes of particular physical properties on the length scale of individual atoms and molecules, have been known and developed for quite some time already, experimental advances since the 1980s and recognition of the potential of nanomaterials led to a genuine breakthrough of the inherently multidisciplinary nanoscience field. Analytical nanoscience and nanotechnology and especially the use of micro and nano electro mechanical systems, of the quantum dots and of mass spectrometry, currently provide one of the most promising avenues for developments in analytical science, derived from their two main fields of action, namely (a) the analysis of nano-structured materials and (b) their use as new tools for analysis. An overview is given of recent developments and trends in the field, highlighting the importance and point out future directions, while also touching drawbacks, such as emerging concerns about health and environmental issues.  相似文献   

7.
Foldamers are artificial folded molecular architectures inspired by the structures and functions of biopolymers. This highlight focuses on important developments concerning foldamers produced by chemical synthesis and on the perspectives that these new self-organized molecular scaffolds offer. Progress in the field has led to synthetic objects that resemble small proteins in terms of size and complexity yet that may not contain any α-amino acids. Foldamers have introduced new tools and concepts to develop biologically active substances, synthetic receptors and novel materials.  相似文献   

8.
Under the pressure of bad economic conditions, Chemical Industry and the Polymer Producing Industry in particular, have been focusing on core businesses and several developments in advanced materials have been slowed down. Increased competition from low cost countries imposes rigorous restructuring of the traditional industry. Environmental considerations enhance the pressure even more. While the Polymer Industry is struggling with major restructuring operations, the scientific activities in the field of macromolecules show a tremendous innovative power. Ever increasing molecular control by the use of new catalysts, cooperative supramolecular interactions and controlled building up of 3-dimensional structures, new architectures leading to enhanced performance and completely new properties, development of functional materials and smart materials are hot items at every meeting. The outcome of this situation could be that the world of materials and materials producers will look quite different in the first decade of the next century.  相似文献   

9.
This review summarizes recent developments made in the incorporation of functional materials into organic polymer monoliths, together with new monolithic forms and formats, which enhance their application as supports and stationary phase materials for sample preparation and chromatographic separations. While polymer monoliths are well‐known supports for the separation of large molecules, recent developments have been made to improve their features for the separation of small molecules. The selectivity and performance of organic polymer monoliths has been improved by the incorporation of different materials, such as metal‐organic frameworks, covalent organic frameworks, or other types of nanostructured materials (carbon nanohorns, nanodiamonds, polyoxometalates, layered double hydroxides, or attapulgite). The surface area of polymer monoliths has been significantly increased by polymer hypercrosslinking, resulting in increased efficiency when applied to the separation of small molecules. In addition, recent exploration of less conventional supports for casting polymer monoliths, including photonic fibres and 3D printed materials, has opened new avenues for the applications of polymer monoliths in the field of separation science. Recent developments made in these topics are covered, focusing on the strategies followed by the authors to prepare the polymer monoliths and the effect of these modifications on the developed analytical applications.  相似文献   

10.
《Tetrahedron: Asymmetry》2004,15(14):2101-2111
This review reports the recent developments in the field of asymmetric hydrogenation in the presence of metal catalysts containing monodentate phosphorus ligands. Besides monophosphines, that have been used at the origin of asymmetric hydrogenation, it mainly includes the use of monophosphites and monophosphoramidites, which when associated to rhodium precursors have recently led to very efficient enantioselective catalytic systems.  相似文献   

11.
Electron beam curing of composites in North America   总被引:4,自引:0,他引:4  
Electron beam curing of fiber-reinforced composites was explored over 30 years ago. Since then there have been developments in accelerator technology, in processes for handling materials presented to an accelerator, and in materials that can be used as matrix binders. In recent years in North America, Cooperative Research and Development Agreements (CRADAs) have been formed involving collaboration amongst materials suppliers, accelerator manufacturers and service providers, national laboratories, such as Oak Ridge National Laboratory, and interested potential users. The scope and status of these CRADAs are reviewed along with other recent developments in the electron beam curing of composites in North America. Innovative and proprietary materials technology has been developed and progress made toward implementing commercial practice. Significant market interest has developed in the military/aerospace industries that are finding the process and performance of electron beam cured composites to offer significant benefits.  相似文献   

12.
Luo Z  Zhang S 《Chemical Society reviews》2012,41(13):4736-4754
Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.  相似文献   

13.
2‐Pyridone is a ubiquitous motif in natural products, drug molecules, ligands in catalysis and organic materials. There is a necessity of direct step‐economic methods for the construction of 2‐pyridone based molecules. Strategically, the primary developments have led to the C3‐functionalizations due to the inherent reactivity of this center. Despite this, many elegant transition metal‐catalysed methods have been established to introduce versatile functional groups at the C4, C5 and C6‐position via direct C?H bond functionalizations. This minireview focuses on the categorized introduction of different functional groups at the 2‐pyridone scaffolds beyond C3‐selectivity and discusses substrate scope, limitations and plausible mechanistic details.  相似文献   

14.
Aromatic amines, such as o-phenylenediamine (OPD), have been used extensively in commercial hair dyes and in the synthesis of agricultural pesticides. Air oxidation of OPD results in the formation of 2,3-diaminophenazine (DAP). Although the mutagenic toxicity of DAP has been shown in both prokaryotic and eukaryotic systems, its phototoxicity remains largely unexplored. This study focuses on the pH-dependent photophysical properties of DAP and demonstrates its ability to photoinduce DNA damage to pUC19 plasmid in vitro. The photocytotoxicity of DAP toward human skin fibroblasts was also measured. DAP exhibits weak intercalative binding to double-stranded DNA with a binding constant K(b) = 3.5 x 10(3) M(-1). Furthermore, upon irradiation with visible light, DAP is able to nick plasmid DNA in the presence of oxygen. The concentration of DAP that resulted in 50% cell death was 172 +/- 9 microM in the dark and 13 +/- 1 microM after irradiation of the DAP-treated cell cultures with visible light (400-700 nm, 30 min, 5 J/cm(2)). The 13-fold increase in toxicity upon exposure to visible light shows the need for further study of the photocytotoxicity of contaminants such as DAP.  相似文献   

15.
In the last few decades, organic solar cells (OSCs) have drawn broad interest owing to their advantages such as being low cost, flexible, semitransparent, non-toxic, and ideal for roll-to-roll large-scale processing. Significant advances have been made in the field of OSCs containing high-performance active layer materials, electrodes, and interlayers, as well as novel device structures. Particularly, the innovation of active layer materials, including novel acceptors and donors, has contributed significantly to the power conversion efficiency (PCE) improvement in OSCs. In this review, high-performance acceptors, containing fullerene derivatives, small molecular, and polymeric non-fullerene acceptors (NFAs), are discussed in detail. Meanwhile, highly efficient donor materials designed for fullerene- and NFA-based OSCs are also presented. Additionally, motivated by the incessant developments of donor and acceptor materials, recent advances in the field of ternary and tandem OSCs are reviewed as well.  相似文献   

16.
The present paper reports the first comprehensive study on the synthesis, structures, optical and electrochemical properties, and peripheral functionalizations of nickel(II) and copper(II) complexes of β‐unsubstituted 5,15‐diazaporphyrins (M‐DAP; M=Ni, Cu) and pyridazine‐fused diazacorrinoids (Ni‐DACX; X=N, O). These two classes of compounds were constructed starting from mesityldipyrromethane by a metal–template method. Ni‐DAP and Cu‐DAP were prepared in high yields by the reaction of the respective metal–bis(dibromodipyrrin) complexes with NaN3–CuX (X=I, Br), whereas Ni‐DACN and Ni‐DACO were formed as predominant products by the reaction with NaN3. In both cases, the metal centers change their geometry from tetrahedral to square planar during the aza‐annulation; X‐ray crystallographic analyses of M‐DAPs showed highly planar diazaporphyrin π planes. The Q band of Ni‐DAP was redshifted and intensified compared with that of a nickel–porphyrin reference, due to the involvement of electronegative nitrogen atoms at the meso positions. It was found that the peripheral bromination of Ni‐DAP and Ni‐DACO occurred regioselectively to afford Ni‐DAP‐Br4 and Ni‐DACO‐Br, respectively. These brominated derivatives underwent Stille reactions with tributyl(phenyl)stannane to give the corresponding phenylated derivatives, Ni‐DAP‐Ph4 and Ni‐DACO‐Ph. On the basis of the absorption spectra and X‐ray analysis, it has been concluded that the attached phenyl groups efficiently conjugate with the diazaporphyrin π system. The present results unambiguously corroborate that the β‐unsubstituted DAPs and DACXs are promising platforms for the development of a new class of π‐conjugated azaporphyrin‐based materials.  相似文献   

17.
Aziridine analogues of diaminopimelic acid (DAP) have been prepared stereoselectively for the first time and evaluated as inhibitors of DAP epimerase. (2R,3S,3'S)-3-(3'-Aminopropane)aziridine-2,3'-dicarboxylate was synthesised and shown to be a reversible inhibitor of DAP epimerase with an IC(50) value of 2.88 mM. (2S,4S)- and (2S,4R)-2-(4-Amino-4-carboxybutyl)aziridine-2-carboxylic acid (ll-azi-DAP and dl-azi-DAP ) were made as pure diastereomers, and both were shown to be irreversible inhibitors of DAP epimerase. ll-Azi-DAP selectively binds to Cys-73 of the enzyme active site whereas dl-azi-DAP binds to Cys-217 via attack of sulfhydryl on the methylene of the inhibitor aziridine ring. These observations are consistent with the two base mechanism proposed for the epimerization of ll-DAP and meso-DAP by DAP epimerase.  相似文献   

18.
以甲基丙烯酸、丙烯酸乙酯和功能单体二十二烷基聚氧乙烯醚甲基丙烯酸酯为原料,过硫酸铵为引发剂,变化交联剂邻苯二甲酸二烯丙酯(DAP)的量,采用半连续乳液聚合方法合成了DAP含量不同的憎水改性缔合型增稠剂乳液.测定了乳液的黏度和乳胶粒粒径及其分布等性能.考察了乳液运动黏度和透光率随pH的变化.随着pH值的增加,乳液的透光率...  相似文献   

19.
ABSTRACT

Past decades we have witnessed many breakthroughs in research on liquid crystals (LCs) as well as significant amplification in the application of LCs. LCs are currently attracting great attention of scientists from all over the world where various researches have been implemented on the varied facets of LCs. In this review we present some recent developments in the field of discotic liquid crystals (DLCs). A large number of DLCs from various aromatic cores have been realised. However, due to paucity of space only DLCs derived from four main aromatic cores, benzene, triphenylene, hexabenzocoronene and graphene, are covered here. An outlook on these emerging two-dimensional organic semiconductor materials with relevant scientific application background has been presented.  相似文献   

20.
A tremendous growth in the field of carbon nanomaterials has led to the emergence of carbon nanotubes, fullerenes, mesoporous carbon and more recently graphene. Some of these materials have found applications in electronics, sensors, catalysis, drug delivery, composites, and so forth. The high temperatures and hydrocarbon precursors involved in their synthesis usually yield highly inert graphitic surfaces. As some of the applications require functionalization of their inert graphitic surface with groups like ? COOH, ? OH, and ? NH2, treatment of these materials in oxidizing agents and concentrated acids become inevitable. More recent works have involved using precursors like carbohydrates to produce carbon nanostructures rich in functional groups in a single‐step under hydrothermal conditions. These carbon nanostructures have already found many applications in composites, drug delivery, materials synthesis, and Li ion batteries. The review aims to highlight some of the recent developments in the application of carbohydrate derived carbon nanostructures and also provide an outlook of their future prospects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号