首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The asymptotic distribution for the local linear estimator in nonparametric regression models is established under a general parametric error covariance with dependent and heterogeneously distributed regressors. A two-step estimation procedure that incorporates the parametric information in the error covariance matrix is proposed. Sufficient conditions for its asymptotic normality are given and its efficiency relative to the local linear estimator is established. We give examples of how our results are useful in some recently studied regression models. A Monte Carlo study confirms the asymptotic theory predictions and compares our estimator with some recently proposed alternative estimation procedures.  相似文献   

2.
This paper proposes a technique [termed censored average derivative estimation (CADE)] for studying estimation of the unknown regression function in nonparametric censored regression models with randomly censored samples. The CADE procedure involves three stages: firstly-transform the censored data into synthetic data or pseudo-responses using the inverse probability censoring weighted (IPCW) technique, secondly estimate the average derivatives of the regression function, and finally approximate the unknown regression function by an estimator of univariate regression using techniques for one-dimensional nonparametric censored regression. The CADE provides an easily implemented methodology for modelling the association between the response and a set of predictor variables when data are randomly censored. It also provides a technique for “dimension reduction” in nonparametric censored regression models. The average derivative estimator is shown to be root-n consistent and asymptotically normal. The estimator of the unknown regression function is a local linear kernel regression estimator and is shown to converge at the optimal one-dimensional nonparametric rate. Monte Carlo experiments show that the proposed estimators work quite well.  相似文献   

3.
This paper studies improvements of multivariate local linear regression. Two intuitively appealing variance reduction techniques are proposed. They both yield estimators that retain the same asymptotic conditional bias as the multivariate local linear estimator and have smaller asymptotic conditional variances. The estimators are further examined in aspects of bandwidth selection, asymptotic relative efficiency and implementation. Their asymptotic relative efficiencies with respect to the multivariate local linear estimator are very attractive and increase exponentially as the number of covariates increases. Data-driven bandwidth selection procedures for the new estimators are straightforward given those for local linear regression. Since the proposed estimators each has a simple form, implementation is easy and requires much less or about the same amount of effort. In addition, boundary corrections are automatic as in the usual multivariate local linear regression.  相似文献   

4.
This paper is concerned with the conditional bias and variance of local quadratic regression to the multivariate predictor variables. Data sharpening methods of nonparametric regression were first proposed by Choi, Hall, Roussion. Recently, a data sharpening estimator of local linear regression was discussed by Naito and Yoshizaki. In this paper, to improve mainly the fitting precision, we extend their results on the asymptotic bias and variance. Using the data sharpening estimator of multivariate local quadratic regression, we are able to derive higher fitting precision. In particular, our approach is simple to implement, since it has an explicit form, and is convenient when analyzing the asymptotic conditional bias and variance of the estimator at the interior and boundary points of the support of the density function.  相似文献   

5.
The censored single-index model provides a flexible way for modelling the association between a response and a set of predictor variables when the response variable is randomly censored and the link function is unknown. It presents a technique for “dimension reduction” in semiparametric censored regression models and generalizes the existing accelerated failure time models for survival analysis. This paper proposes two methods for estimation of single-index models with randomly censored samples. We first transform the censored data into synthetic data or pseudo-responses unbiasedly, then obtain estimates of the index coefficients by the rOPG or rMAVE procedures of Xia (2006) [1]. Finally, we estimate the unknown nonparametric link function using techniques for univariate censored nonparametric regression. The estimators for the index coefficients are shown to be root-n consistent and asymptotically normal. In addition, the estimator for the unknown regression function is a local linear kernel regression estimator and can be estimated with the same efficiency as the parameters are known. Monte Carlo simulations are conducted to illustrate the proposed methodologies.  相似文献   

6.
We present a new method for estimating the frontier of a multidimensional sample. The estimator is based on a kernel regression on the power-transformed data. We assume that the exponent of the transformation goes to infinity while the bandwidth of the kernel goes to zero. We give conditions on these two parameters to obtain complete convergence and asymptotic normality. The good performance of the estimator is illustrated on some finite sample situations.  相似文献   

7.
In some applications of kernel density estimation the data may have a highly non-uniform distribution and be confined to a compact region. Standard fixed bandwidth density estimates can struggle to cope with the spatially variable smoothing requirements, and will be subject to excessive bias at the boundary of the region. While adaptive kernel estimators can address the first of these issues, the study of boundary kernel methods has been restricted to the fixed bandwidth context. We propose a new linear boundary kernel which reduces the asymptotic order of the bias of an adaptive density estimator at the boundary, and is simple to implement even on an irregular boundary. The properties of this adaptive boundary kernel are examined theoretically. In particular, we demonstrate that the asymptotic performance of the density estimator is maintained when the adaptive bandwidth is defined in terms of a pilot estimate rather than the true underlying density. We examine the performance for finite sample sizes numerically through analysis of simulated and real data sets.  相似文献   

8.
Model checking in errors-in-variables regression   总被引:1,自引:0,他引:1  
This paper discusses a class of minimum distance tests for fitting a parametric regression model to a class of regression functions in the errors-in-variables model. These tests are based on certain minimized distances between a nonparametric regression function estimator and a deconvolution kernel estimator of the conditional expectation of the parametric model being fitted. The paper establishes the asymptotic normality of the proposed test statistics under the null hypothesis and that of the corresponding minimum distance estimators. We also prove the consistency of the proposed tests against a fixed alternative and obtain the asymptotic distributions for general local alternatives. Simulation studies show that the testing procedures are quite satisfactory in the preservation of the finite sample level and in terms of a power comparison.  相似文献   

9.
In this paper, the functional-coefficient partially linear regression (FCPLR) model is proposed by combining nonparametric and functional-coefficient regression (FCR) model. It includes the FCR model and the nonparametric regression (NPR) model as its special cases. It is also a generalization of the partially linear regression (PLR) model obtained by replacing the parameters in the PLR model with some functions of the covariates. The local linear technique and the integrated method are employed to give initial estimators of all functions in the FCPLR model. These initial estimators are asymptotically normal. The initial estimator of the constant part function shares the same bias as the local linear estimator of this function in the univariate nonparametric model, but the variance of the former is bigger than that of the latter. Similarly, initial estimators of every coefficient function share the same bias as the local linear estimates in the univariate FCR model, but the variance of the former is bigger than that of the latter. To decrease the variance of the initial estimates, a one-step back-fitting technique is used to obtain the improved estimators of all functions. The improved estimator of the constant part function has the same asymptotic normality property as the local linear nonparametric regression for univariate data. The improved estimators of the coefficient functions have the same asymptotic normality properties as the local linear estimates in FCR model. The bandwidths and the smoothing variables are selected by a data-driven method. Both simulated and real data examples related to nonlinear time series modeling are used to illustrate the applications of the FCPLR model.  相似文献   

10.
This paper develops estimation approaches for nonparametric regression analysis with surrogate data and validation sampling when response variables are measured with errors. Without assuming any error model structure between the true responses and the surrogate variables, a regression calibration kernel regression estimate is defined with the help of validation data. The proposed estimator is proved to be asymptotically normal and the convergence rate is also derived. A simulation study is conducted to compare the proposed estimators with the standard Nadaraya-Watson estimators with the true observations in the validation data set and the complete observations, respectively. The Nadaraya-Watson estimator with the complete observations can serve as a gold standard, even though it is practically unachievable because of the measurement errors.  相似文献   

11.
Weak and universal consistency of moving weighted averages   总被引:1,自引:0,他引:1  
The properties of weighted averages as linear estimators of a regression function and its derivatives are investigated for the fixed design case. Results on weak consistency and on universal consistency are derived, using a modification of the definition of Stone [10]. As examples we consider kernel estimates and weighted local regression estimators and show that the general results apply.  相似文献   

12.
We propose a new test for independence of error and covariate in a nonparametric regression model. The test statistic is based on a kernel estimator for the L2-distance between the conditional distribution and the unconditional distribution of the covariates. In contrast to tests so far available in literature, the test can be applied in the important case of multivariate covariates. It can also be adjusted for models with heteroscedastic variance. Asymptotic normality of the test statistic is shown. Simulation results and a real data example are presented.  相似文献   

13.
In this paper, we consider the regression function or its νth derivative in generalized linear models which may have a change/discontinuity point at an unknown location. The location and its jump size are estimated with the local polynomial fits based on one-sided kernel weighted local-likelihood functions. Asymptotic distributions of the proposed estimators of location and jump size are established. The finite-sample performances of the proposed estimators with practical aspects are illustrated by simulated and beetle mortality examples.  相似文献   

14.
Functional semiparametric partially linear model with autoregressive errors   总被引:1,自引:0,他引:1  
In this paper, we introduce a functional semiparametric model, where a real-valued random variable is explained by the sum of a unknown linear combination of the components of a multivariate random variable and an unknown transformation of a functional random variable. The errors can be autocorrelated. We focus here on the parametric estimation of the coefficients in the linear combination. First, we use a nonparametric kernel method to remove the effect of the functional explanatory variable. Then, we use generalized least squares approach to obtain an estimator of these coefficients. Under some technical assumptions, we prove consistency and asymptotic normality of our estimator. Finally, we present Monte Carlo simulations that illustrate these characteristics.  相似文献   

15.
The problem of optimal prediction in the stochastic linear regression model with infinitely many parameters is considered. We suggest a prediction method that outperforms asymptotically the ordinary least squares predictor. Moreover, if the random errors are Gaussian, the method is asymptotically minimax over ellipsoids in ?2. The method is based on a regularized least squares estimator with weights of the Pinsker filter. We also consider the case of dynamic linear regression, which is important in the context of transfer function modeling.  相似文献   

16.
We developed two kernel smoothing based tests of a parametric mean-regression model against a nonparametric alternative when the response variable is right-censored. The new test statistics are inspired by the synthetic data and the weighted least squares approaches for estimating the parameters of a (non)linear regression model under censoring. The asymptotic critical values of our tests are given by the quantiles of the standard normal law. The tests are consistent against fixed alternatives, local Pitman alternatives and uniformly over alternatives in Hölder classes of functions of known regularity.  相似文献   

17.
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Gaussian process is proved. We also consider various applications for testing model assumptions in nonparametric multiple regression. The model tests obtained are able to detect local alternatives that converge to zero at an n−1/2-rate, independent of the covariate dimension. We consider in detail a test for additivity of the regression function.  相似文献   

18.
In this paper we derive rates of uniform strong convergence for the kernel estimator of the regression function in a left-truncation model. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence. The estimation of the covariate’s density is considered as well. Under the assumption that the lifetime observations are bounded, we show that, by an appropriate choice of the bandwidth, both estimators of the covariate’s density and regression function attain the optimal strong convergence rate known from independent complete samples.  相似文献   

19.
We consider a panel data semiparametric partially linear regression model with an unknown parameter vector for the linear parametric component, an unknown nonparametric function for the nonlinear component, and a one-way error component structure which allows unequal error variances (referred to as heteroscedasticity). We develop procedures to detect heteroscedasticity and one-way error component structure, and propose a weighted semiparametric least squares estimator (WSLSE) of the parametric component in the presence of heteroscedasticity and/or one-way error component structure. This WSLSE is asymptotically more efficient than the usual semiparametric least squares estimator considered in the literature. The asymptotic properties of the WSLSE are derived. The nonparametric component of the model is estimated by the local polynomial method. Some simulations are conducted to demonstrate the finite sample performances of the proposed testing and estimation procedures. An example of application on a set of panel data of medical expenditures in Australia is also illustrated.  相似文献   

20.
In the paper we study a semiparametric density estimation method based on the model of an elliptical distribution. The method considered here shows a way to overcome problems arising from the curse of dimensionality. The optimal rate of the uniform strong convergence of the estimator under consideration coincides with the optimal rate for the usual one-dimensional kernel density estimator except in a neighbourhood of the mean. Therefore the optimal rate does not depend on the dimension. Moreover, asymptotic normality of the estimator is proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号