首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a well-balanced numerical scheme for approximating the solution of the Baer-Nunziato model of two-phase flows by balancing the source terms and discretizing the compaction dynamics equation. First, the system is transformed into a new one of three subsystems: the first subsystem consists of the balance laws in the gas phase, the second subsystem consists of the conservation law of the mass in the solid phase and the conservation law of the momentum of the mixture, and the compaction dynamic equation is considered as the third subsystem. In the first subsystem, stationary waves are used to build up a well-balanced scheme which can capture equilibrium states. The second subsystem is of conservative form and thus can be numerically treated in a standard way. For the third subsystem, the fact that the solid velocity is constant across the solid contact suggests us to compose the technique of the Engquist-Osher scheme. We show that our scheme is capable of capturing exactly equilibrium states. Moreover, numerical tests show the convergence of approximate solutions to the exact solution.  相似文献   

2.
A well-balanced Godunov-type finite volume algorithm is developed for modelling free-surface shallow flows over irregular topography with complex geometry. The algorithm is based on a new formulation of the classical shallow water equations in hyperbolic conservation form. Unstructured triangular grids are used to achieve the adaptability of the grid to the geometry of the problem and to facilitate localised refinement. The numerical fluxes are calculated using HLLC approximate Riemann solver, and the MUSCL-Hancock predictor–corrector scheme is adopted to achieve the second-order accuracy both in space and in time where the solutions are continuous, and to achieve high-resolution results where the solutions are discontinuous. The novelties of the algorithm include preserving well-balanced property without any additional correction terms and the wet/dry front treatments. The good performance of the algorithm is demonstrated by comparing numerical and theoretical results of several benchmark problems, including the preservation of still water over a two-dimensional hump, the idealised dam-break flow over a frictionless flat rectangular channel, the circular dam-break, and the shock wave from oblique wall. Besides, two laboratory dam-break cases are used for model validation. Furthermore, a practical application related to dam-break flood wave propagation over highly irregular topography with complex geometry is presented. The results show that the algorithm can correctly account for free-surface shallow flows with respect to its effectiveness and robustness thus has bright application prospects.  相似文献   

3.
This paper deals with numerical treatments for the shallow water equations with discontinuous topography when the initial data belong to both supersonic region and subsonic region. This kind of data are present in both engineering and rivers, but they are not always well-treated in existing schemes. Our goal is to improve the well-balanced scheme constructed earlier in our work by introducing a computing corrector into the construction of the scheme. First, a further study in the construction of the well-balanced scheme reveals that the errors could make the approximate states near the critical surface that ought to be in one side of the critical surface fall into the other side. This qualitative change, though small, may cause much larger errors following stationary hydraulic jumps formed from these approximate states due to the jump of the bottom. Then, we introduce a corrector in the computing algorithm that selects the equilibrium states in the construction of the well-balanced scheme such that the approximate stationary hydraulic jumps always remain in the right region. Numerical tests show that the well-balanced method using an underlying numerical flux such as Lax–Friedrichs flux, FORCE, GFORCE, or Roe fluxes can approximate very well the exact solution even when the initial data are on both supercritical region and subcritical region.  相似文献   

4.
We introduce a central-upwind scheme for one- and two-dimensional systems of shallow-water equations with horizontal temperature gradients (the Ripa system). The scheme is well-balanced, positivity preserving and does not develop spurious pressure oscillations in the neighborhood of temperature jumps, that is, near the contact waves. Such oscillations would typically appear when a conventional Godunov-type finite volume method is applied to the Ripa system, and the nature of the oscillation is similar to the ones appearing at material interfaces in compressible multifluid computations. The idea behind the proposed approach is to utilize the interface tracking method, originally developed in Chertock et al. (M2AN Math Model Numer Anal 42:991–1019, 2008) for compressible multifluids. The resulting scheme is highly accurate, preserves two types of “lake at rest” steady states, and is oscillation free across the temperature jumps, as it is illustrated in a number of numerical experiments.  相似文献   

5.
A Godunov-type finite volume scheme on unstructured grids is proposed to numerically solve the Savage-Hutter equations in curvilinear coordinate. We show the direct observation that the model isn't a Galilean invariant system. At the cell boundary, the modified Harten-Lax-van Leer (HLL) approximate Riemann solver is adopted to calculate the numerical flux. The modified HLL flux is not troubled by the lack of Galilean invariance of the model and it is helpful to handle discontinuities at free interface. Rigidly the system is not always a hyperbolic system due to the dependence of flux on the velocity gradient. Even so, our numerical results still show quite good agreements with reference solutions. The simulations for granular avalanche flows with shock waves indicate that the scheme is applicable.  相似文献   

6.
The purpose of this paper is to study the wave behavior of the hyperbolic conservation law with concatenation of point sources: for i ∈ I some finite index set, and where δ( ) is the Dirac measure. Special features of this problem are the discontinuities that appear along the t -axis at the point sources x = x i +1/2. Resonance occurs when the speed of the nonlinear wave is close to zero. In addition to classical shock waves, the equation exhibits overcompressive and undercompressive waves. The Riemann problem "with resonance" is solved, and we show global existence via the Glimm scheme. Analytical understanding is used to design a well-balanced numerical scheme, of the Godunov type, which preserves the balance between the sources terms and the fluxes terms. Some numerical tests are reported.  相似文献   

7.
In the present paper a numerical method, based on finite differences and spline collocation, is presented for the numerical solution of a generalized Fisher integro-differential equation. A composite weighted trapezoidal rule is manipulated to handle the numerical integrations which results in a closed-form difference scheme. A number of test examples are solved to assess the accuracy of the method. The numerical solutions obtained, indicate that the approach is reliable and yields results compatible with the exact solutions and consistent with other existing numerical methods. Convergence and stability of the scheme have also been discussed.  相似文献   

8.
We propose a method for numerically solving linear singularly perturbed two point boundary value problems in ordinary differential equations with a boundary layer on the left end of the underlying interval. This is a practical method and can be easily implemented on a computer. The original problem is divided into inner and outer region differential equation systems. The reduced problem is solved to obtain the terminal boundary condition. Then, a new inner region problem is created and solved as a two point boundary value problem (TPBVP). In turn, the outer region problem is also solved as a TPBVP. Both these TPBVPs are efficiently treated by employing a slightly modified classical finite difference scheme coupled with discrete invariant imbedding algorithm to obtain the numerical solutions. The stability of some recurrence relations involved in the algorithm is investigated. The proposed method is iterative on the terminal point. Some numerical examples are included, and the computational results are compared with exact solutions. It is observed that the accuracy predicted can always be achieved with very little computational effort.  相似文献   

9.
In this article, numerical solutions of the generalized Burgers–Fisher equation are obtained using a compact finite difference method with minimal computational effort. To verify this, a combination of a sixth‐order compact finite difference scheme in space and a low‐storage third‐order total variation diminishing Runge–Kutta scheme in time have been used. The computed results with the use of this technique have been compared with the exact solution to show the accuracy of it. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present method is seen to be a very good alternative to some existing techniques for realistic problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
非线性反应扩散方程的数值解   总被引:1,自引:0,他引:1  
本文采用Petrov-Galerkin有限元法构造了非线性反应扩散方程的数值格式,既适用于全场性的初值,也适用于局部性的初值,利用全场性初值求得的进波数值解与精确解高度吻合,证明本方法与其它数值方法比较,有更高的精度和稳定性,利用各种局部性初值所算出的数值解表明,任何局部的扰动都会得到充分的发展,且当时间充分长后,演变为向左、右传播的行波,其波前的形状及传播速度完全由系统本身所决定,而与初值的类型无关.  相似文献   

11.
叶俊  李凯 《数学学报》2011,(5):823-838
研究了一类带Markov状态转换的跳扩散方程的数值解的问题,为讨论这类方程精确解的数值计算问题,我们给出了一种基于Euler格式的方程解的跳适应算法,并在一定的条件下,证明了基于这种新的跳适应算法所得到的方程的数值解是收敛于它的精确解,同时还给出了数值解收敛到其精确解的收敛阶数.最后,本文通过两个例子说明了这种跳适应算法的计算有效性.  相似文献   

12.
In the present paper, a numerical method is proposed for the numerical solution of a coupled system of viscous Burgers’ equation with appropriate initial and boundary conditions, by using the cubic B-spline collocation scheme on the uniform mesh points. The scheme is based on Crank–Nicolson formulation for time integration and cubic B-spline functions for space integration. The method is shown to be unconditionally stable using von-Neumann method. The accuracy of the proposed method is demonstrated by applying it on three test problems. Computed results are depicted graphically and are compared with those already available in the literature. The obtained numerical solutions indicate that the method is reliable and yields results compatible with the exact solutions.  相似文献   

13.
This paper is concerned with new algorithms which provide the sharp bounds that are guaranteed to contain the exact solutions of nonlinear Volterra integral equations. We develop new enclosure algorithms based on the interval methods which was first introduced by Moore in [24] together with the Taylor polynomials to improve the accuracy of the scheme by reducing the width of interval solutions. The modified methods calculate a priori bound automatically in parallel with the computation of solutions of integral equations. We will show that the accuracy of the proposed algorithms is dependent on the number of interval subdivisions. Some numerical experiments are also included to demonstrate the validity and applicability of the scheme and showing a marked improvement in comparison with the recent existing numerical results.  相似文献   

14.
A mathematical model is developed for a micro-electro-mechanical system (MEMS) instrument that has been designed primarily to measure the viscosity of fluids that are encountered during oil well exploration. It is shown that, in one mode of operation, the displacement of the device satisfies a fractional differential equation (FDE). The theory of FDEs is used to solve the governing equation in closed form and numerical solutions are also determined using a simple but efficient central difference scheme. It is shown how knowledge of the exact and numerical solutions enables the design of the device to be optimised. It is also shown that the numerical scheme may be extended to encompass the case of a nonlinear spring, where the resulting FDE is nonlinear.  相似文献   

15.
In this paper a Godunov-type projection method for computing approximate solutions of the zero Froude number (incompressible) shallow water equations is presented. It is second-order accurate and locally conserves height (mass) and momentum. To enforce the underlying divergence constraint on the velocity field, the predicted numerical fluxes, computed with a standard second order method for hyperbolic conservation laws and applied to an auxiliary system, are corrected in two steps. First, a MAC-type projection adjusts the advective velocity divergence. In a second projection step, additional momentum flux corrections are computed to obtain new time level cell-centered velocities, which satisfy another discrete version of the divergence constraint. The scheme features an exact and stable second projection. It is obtained by a Petrov–Galerkin finite element ansatz with piecewise bilinear trial functions for the unknown height and piecewise constant test functions. The key innovation compared to existing finite volume projection methods is a correction of the in-cell slopes of the momentum by the second projection. The stability of the projection is proved using a generalized theory for mixed finite elements. In order to do so, the validity of three different inf-sup conditions has to be shown. The results of preliminary numerical test cases demonstrate the method’s applicability. On fixed grids the accuracy is improved by a factor four compared to a previous version of the scheme.  相似文献   

16.
This paper is devoted to the numerical approximation of the compressible Navier-Stokes equations with several independent entropies. Various models for complex compressible materials typically enter the proposed framework. The striking novelty over the usual Navier-Stokes equations stems from the generic impossibility of recasting equivalently the present system in full conservation form. Classical finite volume methods are shown to grossly fail in the capture of viscous shock solutions that are of primary interest in the present work. To enforce for validity a set of generalized jump conditions that we introduce, we propose a systematic and effective correction procedure, the so-called nonlinear projection method, and prove that it preserves all the stability properties satisfied by suitable Godunov-type methods. Numerical experiments assess the relevance of the method when exhibiting approximate solutions in close agreement with exact solutions.

  相似文献   


17.
In this paper, the quintic B-spline collocation scheme is implemented to find numerical solution of the Kuramoto–Sivashinsky equation. The scheme is based on the Crank–Nicolson formulation for time integration and quintic B-spline functions for space integration. The accuracy of the proposed method is demonstrated by four test problems. The numerical results are found to be in good agreement with the exact solutions. Results are also shown graphically and are compared with results given in the literature.  相似文献   

18.
A special model of a rarefied hard-sphere gas is considered. The hard-sphere particles undergo absolutely elastic collisions. It is assumed that particles can collide only if their nonzero velocities are orthogonal to each other. The model makes it possible to proceed from the Boltzmann equation to the Smoluchowski coagulation equation, where coagulation means that the kinetic energies of the colliding particles are added. A Monte Carlo scheme for simulation of the phenomenon is described, and the convergence of the simulation algorithm is proved. The convergence of numerical results to exact solutions of the Smoluchowski equation and to finite-difference solutions is tested.  相似文献   

19.
A flux-limiter method for dam-break flows over erodible sediment beds   总被引:3,自引:0,他引:3  
Finite volume methods for dam-break flows over erodible sediment beds require a monotone numerical flux. In the present study we present a new flux-limiter scheme based on the Lax–Wendroff method coupled with a non-homogeneous Riemann solver and a flux limiter function. The non-homogeneous Riemann solver consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The proposed method satisfy the conservation property such that the discretization of the flux gradients and the source terms are well-balanced in the numerical solution of suspended sediment models. The flux-limiter method provides accurate results avoiding numerical oscillations and numerical dissipation in the approximated solutions. Several standard test examples are considered to verify the performance and the accuracy of the proposed method.  相似文献   

20.
This article aims to establish a semi-analytical approach based on the homotopy perturbation method (HPM) to find the closed form or approximated solutions for the population balance equations such as Smoluchowski"s coagulation, fragmentation, coupled coagulation-fragmentation and bivariate coagulation equations. An accelerated form of the HPM is combined with the Elzaki transformation to improve the accuracy and efficiency of the method. One of the significant advantages of the technique lies over the classic numerical methods as it allows solving the linear and non-linear differential equations without discretization. Further, it has benefits over the existing semi-analytical techniques such as Adomian decomposition method (ADM), optimized decomposition method (ODM), and homotopy analysis method (HAM) in the sense that computation of Adomian polynomials and convergence parameters are not required. The novelty of the scheme is shown by comparing the numerical findings with the existing results obtained via ADM, HPM, HAM and ODM for non-linear coagulation equation. This motivates us to extend the scheme for solving the other models mentioned above. The supremacy of the proposed scheme is demonstrated by taking several numerical examples for each problem. The error between exact and series solutions provided in graphs and tables show the accuracy and applicability of the method. In addition to this, convergence of the series solution is also the key attraction of the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号