首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we introduce a new boundary condition that can be used when reconstructing an image from observed blurred and noisy data. Our approach uses information from the observed image to enforce boundary conditions that continue image features such as edges and texture across the boundary. Because of its similarity to methods used in texture synthesis, we call our approach synthetic boundary conditions. We provide an efficient algorithm for implementing the new boundary condition, and provide a linear algebraic framework for the approach that puts it in the context of more classical and well known image boundary conditions, including zero, periodic, reflective, and anti-reflective. Extensive numerical experiments show that our new synthetic boundary conditions provide a more accurate approximation of the true image scene outside the image boundary, and thus allow for better reconstructions of the unknown, true image scene.  相似文献   

2.
Computable error bounds for pointwise derivatives of a Neumann problem   总被引:1,自引:0,他引:1  
In this paper we discuss the recovery of derivatives and thecomputation of rigorous and useful upper bounds for the pointwiseerror in the recovered derivatives, for finite element approximationsof the Laplace equation with Neumann boundary conditions, especiallyat points close to or on a smooth, curved boundary. We analyzethe dipole image technique for the case of curved boundaries,and show how to compute reliable recovered derivatives and errorbounds even in the limiting case of points lying on the curvedboundary. Numerical experiments show reasonably tight errorbounds for points both close to and away from a curved boundary.  相似文献   

3.
As an alternative to classic boundary conditions, new mean boundary conditions for image restoration problem have been recently introduced by Shi and Chang [Y. Shi, Q. Chang, Acceleration methods for image restoration problem with different boundary conditions, Applied Numerical Mathematics 58 (2008) 602-614]. In this paper, we propose an efficient scheme for computing the Kronecker product approximations of blurring matrices with the new mean boundary conditions. Our scheme does not require the symmetry condition of point spread functions. Detailed experiments in image restoration are given to demonstrate the efficiency of our scheme.  相似文献   

4.
In a bounded domain, we consider an Euler–Bernoulli-type thermoelastic plate equation with perturbed boundary conditions. The boundary conditions are such that when the perturbation parameter goes to infinity, we recover the hinged boundary conditions, while one recovers the clamped boundary conditions when the perturbation parameter goes to zero. Relying on resolvent estimates, we show that the underlying semigroup is uniformly, with respect to the perturbation parameter, analytic and exponentially stable. The main features of our proof are appropriate decompositions of the components of the system and the use of Lions? interpolation inequalities.  相似文献   

5.
We study how boundary conditions affect the multiple-scale analysis of hyperbolic conservation laws with rapid spatial fluctuations. The most significant difficulty occurs when one has insufficient boundary conditions to solve consistency conditions. We show how to overcome this missing boundary condition difficulty for both linear and nonlinear problems through the recovery of boundary information. We introduce two methods for this recovery (multiple-scale analysis with a reduced set of scales, and a combination of Laplace transforms and multiple scales) and show that they are roughly equivalent. We also show that the recovered boundary information is likely to contain secular terms if the initial conditions are nonzero. However, for the linear problem, we demonstrate how to avoid these secular terms to construct a solution that is valid for all time. For nonlinear problems, we argue that physically relevant problems do not exhibit the missing boundary condition difficulty.  相似文献   

6.
The dynamics of a (nonlinear) Berger plate in the absence of rotational inertia are considered with inhomogeneous boundary conditions. In our analysis, we consider boundary damping in two scenarios: (i) free plate boundary conditions, or (ii) hinged-type boundary conditions. In either situation, the nonlinearity gives rise to complicating boundary terms. In the case of free boundary conditions we show that well-posedness of finite-energy solutions can be obtained via highly nonlinear boundary dissipation. Additionally, we show the existence of a compact global attractor for the dynamics in the presence of hinged-type boundary dissipation (assuming a geometric condition on the entire boundary (Lagnese, 1989)). To obtain the existence of the attractor we explicitly construct the absorbing set for the dynamics by employing energy methods that: (i) exploit the structure of the Berger nonlinearity, and (ii) utilize sharp trace results for the Euler–Bernoulli plate in Lasiecka and Triggiani (1993).We provide a parallel commentary (from a mathematical point of view) to the discussion of modeling with Berger versus von Karman nonlinearities: to wit, we describe the derivation of each nonlinear dynamics and a discussion of the validity of the Berger approximation. We believe this discussion to be of broad value across engineering and applied mathematics communities.  相似文献   

7.
Image segmentation is a key and fundamental problem in image processing, computer graphics, and computer vision. Level set based method for image segmentation is used widely for its topology flexibility and proper mathematical formulation. However, poor performance of existing level set models on noisy images and weak boundary limit its application in image segmentation. In this paper, we present a region consistency constraint term to measure the regional consistency on both sides of the boundary, this term defines the boundary of the image within a range, and hence increases the stability of the level set model. The term can make existing level set models significantly improve the efficiency of the algorithms on segmenting images with noise and weak boundary. Furthermore, this constraint term can make edge-based level set model overcome the defect of sensitivity to the initial contour. The experimental results show that our algorithm is efficient for image segmentation and outperform the existing state-of-art methods regarding images with noise and weak boundary.  相似文献   

8.
In this paper we are concerned with deblurring problems in the case of multiple images coming from the Large Binocular Telescope (an important example of telescope of interferometric type). For this problem, we are interested in checking the role of the boundary conditions in the quality of the reconstructed image. In particular, we will consider reflective and anti-reflective boundary conditions and the re-blurring idea. The results of the proposed combinations are quite satisfactory when compared with classical Dirichlet or periodic boundary conditions, especially when increasing the number of images acquired by the LBT. This behavior is confirmed by a wide numerical experimentation.  相似文献   

9.
10.
Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension.  相似文献   

11.
Recently, a fast alternating minimization algorithm for total variation image deblurring (FTVd) has been presented by Wang, Yang, Yin, and Zhang (2008) [32]. The method in a nutshell consists of a discrete Fourier transform-based alternating minimization algorithm with periodic boundary conditions and in which two fast Fourier transforms (FFTs) are required per iteration. In this paper, we propose an alternating minimization algorithm for the continuous version of the total variation image deblurring problem. We establish convergence of the proposed continuous alternating minimization algorithm. The continuous setting is very useful to have a unifying representation of the algorithm, independently of the discrete approximation of the deconvolution problem, in particular concerning the strategies for dealing with boundary artifacts. Indeed, an accurate restoration of blurred and noisy images requires a proper treatment of the boundary. A discrete version of our continuous alternating minimization algorithm is obtained following two different strategies: the imposition of appropriate boundary conditions and the enlargement of the domain. The first one is computationally useful in the case of a symmetric blur, while the second one can be efficiently applied for a nonsymmetric blur. Numerical tests show that our algorithm generates higher quality images in comparable running times with respect to the Fast Total Variation deconvolution algorithm.  相似文献   

12.
In this paper, we employ the image method to solve boundary value problems in domains containing circular or spherical shaped boundaries free of sources. two and threeD problems as well as symmetric and anti-symmetric cases are considered. By treating the image method as a special case of method of fundamental solutions, only at most four unknown strengths, distributed at the center, two locations of frozen images and one free constant, need to be determined. Besides, the optimal locations of sources are determined. For the symmetric and anti-symmetric cases, only two coefficients are required to match the two boundary conditions. The convergence rate versus number of image group is numerically performed. The differences of the image solutions between 2D and 3D problems are addressed. It is found that the 2D solution in terms of the bipolar coordinates is mathematically equivalent to that of the simplest MFS with only two sources and one free constant. Finally, several examples are demonstrated to see the validity of the image method for boundary value problems.  相似文献   

13.
The goal of this work is to study a model of the wave equation with semilinear porous acoustic boundary conditions with nonlinear boundary/interior sources and a nonlinear boundary/interior damping. First, applying the nonlinear semigroup theory, we show the existence and uniqueness of local in time solutions. The main difficulty in proving the local existence result is that the Neumann boundary conditions experience loss of regularity due to boundary sources. Using an approximation method involving truncated sources and adapting the ideas in Lasiecka and Tataru (1993) [28], we show that the existence of solutions can still be obtained. Second, we prove that under some restrictions on the source terms, then the local solution can be extended to be global in time. In addition, it has been shown that the decay rates of the solution are given implicitly as solutions to a first order ODE and depends on the behavior of the damping terms. In several situations, the obtained ODE can be easily solved and the decay rates can be given explicitly. Third, we show that under some restrictions on the initial data and if the interior source dominates the interior damping term and if the boundary source dominates the boundary damping, then the solution ceases to exists and blows up in finite time. Moreover, in either the absence of the interior source or the boundary source, then we prove that the solution is unbounded and grows as an exponential function.  相似文献   

14.
In a recent article, we achieved the well-posedness of linear hyperbolic initial and boundary value problems (IBVP) in a rectangle via semigroup method, and we found that there are only two elementary modes called hyperbolic and elliptic modes in the system. It seems that, there is only one set of boundary conditions for the hyperbolic mode, while there are infinitely many sets of boundary conditions for the elliptic mode, which can lead to well-posedness. In this article, we continue to consider linear hyperbolic IBVP in a rectangle in the constant coefficients case and we show that there are also infinitely many sets of boundary conditions for hyperbolic mode which will lead to the existence of a solution. We also have uniqueness in some special cases. The boundary conditions satisfy the reflection conditions introduced in Section 3, which turn out to be equivalent to the strictly dissipative conditions.  相似文献   

15.
The problem of reconstructing signals and images from degraded ones is considered in this paper. The latter problem is formulated as a linear system whose coefficient matrix models the unknown point spread function and the right hand side represents the observed image. Moreover, the coefficient matrix is very ill-conditioned, requiring an additional regularization term. Different boundary conditions can be proposed. In this paper antireflective boundary conditions are considered. Since both sides of the linear system have uncertainties and the coefficient matrix is highly structured, the Regularized Structured Total Least Squares approach seems to be the more appropriate one to compute an approximation of the true signal/image. With the latter approach the original problem is formulated as an highly nonconvex one, and seldom can the global minimum be computed. It is shown that Regularized Structured Total Least Squares problems for antireflective boundary conditions can be decomposed into single variable subproblems by a discrete sine transform. Such subproblems are then transformed into one-dimensional unimodal real-valued minimization problems which can be solved globally. Some numerical examples show the effectiveness of the proposed approach.  相似文献   

16.
We analyze the spectral behavior of higher-order elliptic operators when the domain is perturbed. We provide general spectral stability results for Dirichlet and Neumann boundary conditions. Moreover, we study the bi-harmonic operator with the so-called intermediate boundary conditions. We give special attention to this last case and analyze its behavior when the boundary of the domain has some oscillatory behavior. We will show that there is a critical oscillatory behavior and that the limit problem depends on whether we are above, below or just sitting on this critical value.  相似文献   

17.
Inspired by earlier results on the quasilinear mean curvature flow, and recent investigations of fully nonlinear curvature flow of closed hypersurfaces which are not convex, we consider contraction of axially symmetric hypersurfaces by convex, degree-one homogeneous fully nonlinear functions of curvature. With a natural class of Neumann boundary conditions, we show that evolving hypersurfaces exist for a finite maximal time. The maximal time is characterised by a curvature singularity at either boundary. Some results continue to hold in the cases of mixed Neumann–Dirichlet boundary conditions and more general curvature-dependent speeds.  相似文献   

18.
Powell–Sabin splines are piecewise quadratic polynomials with a global C1C1-continuity, defined on conforming triangulations. Imposing boundary conditions on such a spline leads to a set of constraints on the spline coefficients. First, we discuss boundary conditions defined on a polygonal domain, before we treat boundary conditions on a general curved domain boundary. We consider Dirichlet and Neumann conditions, and we show that a particular choice of the PS-triangles at the boundary can greatly simplify the corresponding constraints. Finally, we consider an application where the techniques developed in this paper are used: the numerical solution of a partial differential equation by the Galerkin and collocation method.  相似文献   

19.
When one uses high-order finite difference schemes for the wave equation, for instance fourth order schemes, the treatment of boundary conditions poses a real difficulty since one needs several additional equations (for the nodes close to the boundary), while one single scalar boundary condition is available. In the case of perfectly reflecting boundary conditions, namely the homogeneous Neumann or Dirichlet conditions, this difficulty can be overcomed by the use of the well-known image principle, which permits the extension of the equation outside of the domain of calculation by an appropriate symmetrization of the data. We propose in this article a generalization of this principle to the absorbing boundary conditions. Through a symmetrization process, we are led to introduce a damped wave equation with a damping term supported by the boundary. The treatment of the boundary condition is then replaced by the approximation of this new damped wave equation in the whole space. The theoretical justification of our approach is based on new energy estimates for the wave equation (when high-order absorbing boundary conditions are used), and constitutes an alternative to the use of the well-known Kreiss criterion to prove the stability of the associated initial boundary value problems. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The conventional way of constructing boundary functions for wavelets on a finite interval is by forming linear combinations of boundary-crossing scaling functions. Desirable properties such as regularity (i.e. continuity and approximation order) are easy to derive from corresponding properties of the interior scaling functions. In this article we focus instead on boundary functions defined by recursion relations. We show that the number of boundary functions is uniquely determined, and derive conditions for determining regularity from the recursion coefficients. We show that there are regular boundary functions which are not linear combinations of shifts of the underlying scaling functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号